Balanced colourings and equitable partitions of triangular association schemes

R. A. Bailey University of St Andrews

Queen Mary University of London (emerita)

30th British Combinatorical Conference, Queen Mary University of London, 24 July 2024

The triangular association scheme

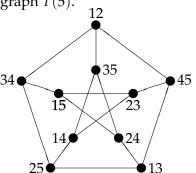
In some experiments, such as those in Human-Computer Interaction at QMUL, the experimental units are all pairs from a set of *m* individuals, and each "treatment" is an activity undertaken by such a pair.

The triangular association scheme

In some experiments, such as those in Human-Computer Interaction at QMUL, the experimental units are all pairs from a set of m individuals, and each "treatment" is an activity undertaken by such a pair. The set of such pairs forms the triangular association scheme T(m), which is a strongly regular graph, with an edge between two pairs if they have an individual in common.

The triangular association scheme

In some experiments, such as those in Human-Computer Interaction at QMUL, the experimental units are all pairs from a set of m individuals, and each "treatment" is an activity undertaken by such a pair. The set of such pairs forms the triangular association scheme T(m), which is a strongly regular graph, with an edge between two pairs if they have an individual in common. The Petersen graph is the complement of the triangular graph T(5).



Triangular association schemes

Bailey

BCC 2024

When m = 6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

When m=6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3					
4					
5					
6					

When m = 6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3					
4					
5			*		
6					

$$* = {3,5}$$

When m = 6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3	0	0			
4			0		
5	0	0	*	0	
6			0		0

$$* = {3,5}$$

 \circ = vertices joined to vertex $\{3,5\}$

Bailey

Let Ω be the set of vertices of the graph T(m).

Bailey Triangular association schemes BCC 2024 4/2

Let Ω be the set of vertices of the graph T(m). Every vertex has degree 2(m-2) (so we assume that $m \ge 4$).

Let Ω be the set of vertices of the graph T(m). Every vertex has degree 2(m-2) (so we assume that $m \geq 4$). Here are three $\Omega \times \Omega$ real matrices associated with T(m):

- the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix *I*;
- ▶ the all-1 matrix *J*.

Let Ω be the set of vertices of the graph T(m). Every vertex has degree 2(m-2) (so we assume that $m \geq 4$). Here are three $\Omega \times \Omega$ real matrices associated with T(m):

- the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- ▶ the identity matrix *I*;
- ▶ the all-1 matrix *J*.

$$A^2 = (2m - 8)I + (m - 6)A + 4J.$$

Let Ω be the set of vertices of the graph T(m). Every vertex has degree 2(m-2) (so we assume that $m \geq 4$). Here are three $\Omega \times \Omega$ real matrices associated with T(m):

- the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix *I*;
- ▶ the all-1 matrix *J*.

$$A^2 = (2m - 8)I + (m - 6)A + 4J.$$

The real vector space \mathbb{R}^{Ω} is the orthogonal direct sum of subspaces W_0 , W_1 and W_2 , each of which is (contained in) an eigenspace of A and an eigenspace of J, where W_0 is the one-dimensional subspace spanned by the all-1 vector \mathbf{u} .

Let Ω be the set of vertices of the graph T(m). Every vertex has degree 2(m-2) (so we assume that $m \geq 4$). Here are three $\Omega \times \Omega$ real matrices associated with T(m):

- the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- ▶ the identity matrix *I*;
- ▶ the all-1 matrix *J*.

$$A^2 = (2m - 8)I + (m - 6)A + 4J.$$

The real vector space \mathbb{R}^{Ω} is the orthogonal direct sum of subspaces W_0 , W_1 and W_2 , each of which is (contained in) an eigenspace of A and an eigenspace of J, where W_0 is the one-dimensional subspace spanned by the all-1 vector \mathbf{u} . (I will identify W_1 and W_2 later.)

Bailey

If we regard each "treatment" as a colour, then the experimental design is a colouring of the vertex-set of the graph.

If we regard each "treatment" as a colour, then the experimental design is a colouring of the vertex-set of the graph.

There are two, unrelated, desirable statistical conditions that can be expressed as combinatorial conditions of the colouring.

If we regard each "treatment" as a colour, then the experimental design is a colouring of the vertex-set of the graph.

There are two, unrelated, desirable statistical conditions that can be expressed as combinatorial conditions of the colouring.

The first is called a balanced colouring of the graph.

If we regard each "treatment" as a colour, then the experimental design is a colouring of the vertex-set of the graph.

There are two, unrelated, desirable statistical conditions that can be expressed as combinatorial conditions of the colouring.

The first is called a balanced colouring of the graph.

The second is called an equitable partition of the graph.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$. Assume that

$$\operatorname{Cov}(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } T(m) \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } T(m) \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 .

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } T(m) \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 .

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } T(m) \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 . We do not know the values of γ_0 , γ_1 and γ_2 in advance.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment i, there is an unknown constant τ_i such that $\mathbb{E}(Y_\omega) = \tau_i$ if $f(\omega) = i$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } T(m) \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 . We do not know the values of γ_0 , γ_1 and γ_2 in advance. When is the choice of best design not affected by the values of

 γ_0 , γ_1 and γ_2 ?

First desirable statistical condition

Condition 1 We want the variance V_{ij} of the estimator of $\tau_i - \tau_j$ to be the same for all pairs $\{i, j\}$ of distinct treatments.

First desirable statistical condition

- Condition 1 We want the variance V_{ij} of the estimator of $\tau_i \tau_j$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
 - Solution Allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{i,j\}$ of distinct treatments, there are λ edges with i at one end and j at the other.

First desirable statistical condition

- Condition 1 We want the variance V_{ij} of the estimator of $\tau_i \tau_j$ to be the same for all pairs $\{i,j\}$ of distinct treatments.
 - Solution Allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{i,j\}$ of distinct treatments, there are λ edges with i at one end and j at the other.

Apologies for the confusing notation.

For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B,

Bailey Triangular association schemes BCC 2024 8/24

We need to allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.

We need to allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.

If m is odd and t = m we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order m.)

We need to allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.

If m is odd and t=m we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order m.) Then each treatment occurs on (m-1)/2 plots, and $\lambda=m-2$.

We need to allocate the treatments to the vertices of T(m) in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.

If m is odd and t=m we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order m.) Then each treatment occurs on (m-1)/2 plots, and $\lambda=m-2$. In fact, each treatment misses one individual and occurs once with every other individual.

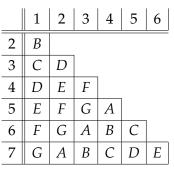
An example with m = 7

	1	2	3	4	5	6
2	В					
3	С	D				
4	D	Е	F			
5	Е	F	G	A		
6	F	G	Α	В	С	
7	G	A	В	С	D	Ε

An example with m=7

	1	2	3	4	5	6
2	В					
3	С	D				
4	D	Е	F			
5	Е	F	G	Α		
6	F	G	Α	В	С	
7	G	A	В	С	D	Ε

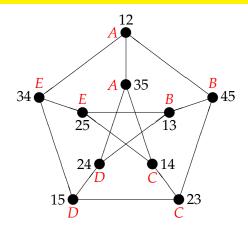
Treatment *A* occurs once with every individual except individual 1.



Treatment *A* occurs once with every individual except individual 1.

For strongly regular graphs in general, such designs are called balanced colourings of strongly regular graphs.

This design on the Petersen graph



For each treatment, there is one edge that has that treatment on both vertices.

For each pair of distinct treatments, there is one edge that has them on its endpoints.

Bailey

Second desirable statistical condition

For i = 1, ..., m, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_1, ..., \mathbf{v}_m$.

Second desirable statistical condition

For $i=1,\ldots,m$, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^Ω spanned by $\mathbf{v}_1,\ldots,\mathbf{v}_m$. Then $W_0=\langle\mathbf{u}\rangle$, $W_1=V_{\mathrm{ind}}\cap W_0^\perp$ and $W_2=V_{\mathrm{ind}}^\perp$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_i - \tau_j$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for plots with treatment i and those with treatment j.

Second desirable statistical condition

For $i=1,\ldots,m$, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^Ω spanned by $\mathbf{v}_1,\ldots,\mathbf{v}_m$. Then $W_0=\langle\mathbf{u}\rangle$, $W_1=V_{\mathrm{ind}}\cap W_0^\perp$ and $W_2=V_{\mathrm{ind}}^\perp$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_i - \tau_j$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for plots with treatment i and those with treatment j.

Solution The subspace V_T of \mathbb{R}^{Ω} consisting of vectors which are constant on each treatment can be orthogonally decomposed as

$$W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$$

11/24

Bailey Triangular association schemes BCC 2024

Second desirable statistical condition, continued

We want

$$V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$$

Second desirable statistical condition, continued

We want

$$V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$$

Since the treatment subspace V_T contains W_0 , there are three possibilities.

Bailey Triangular association schemes BCC 2024 12

Second desirable statistical condition, continued

We want

$$V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$$

Since the treatment subspace V_T contains W_0 , there are three possibilities.

- (a) $V_T \leq W_0 \oplus W_2$.
- (b) $V_T \leq W_0 \oplus W_1$.
- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Bailey

(a) $V_T \leq W_0 \oplus W_2$.

- (a) $V_T \leq W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then
 - ▶ $p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;

- (a) $V_T \leq W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;

- (a) $V_T \leq W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
 - if $p_A = 1$ then m is even and A occurs on m/2 pairs;

- (a) $V_T \leq W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment *A* occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments *A*;
 - if $p_A = 1$ then m is even and A occurs on m/2 pairs;
 - ▶ if this is true for all treatments then t = m 1.

(a) $V_T \leq W_0 \oplus W_2$.

For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
- ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
- if $p_A = 1$ then m is even and A occurs on m/2 pairs;
- ▶ if this is true for all treatments then t = m 1.

In this case, we can do this by using a symmetric Latin square of order *m* with a single letter on the main diagonal and omitting the main diagonal and plots above the main diagonal.

(a) $V_T \leq W_0 \oplus W_2$.

For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- ▶ $p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
- ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
- if $p_A = 1$ then m is even and A occurs on m/2 pairs;
- ▶ if this is true for all treatments then t = m 1.

In this case, we can do this by using a symmetric Latin square of order *m* with a single letter on the main diagonal and omitting the main diagonal and plots above the main diagonal.

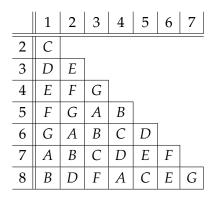
(Start with a Latin square of the previous type; add an extra row at the bottom; move every diagonal element down to the bottom row; then put a dummy like ∞ on every diagonal cell.)

	1	2	3	4	5	6	7
2	С						
3	D	Е					
4	Е	F	G				
5	F	G	Α	В			
6	G	Α	В	С	D		
7	Α	В	С	D	Е	F	
8	В	D	F	A	С	Ε	G

	1	2	3	4	5	6	7
2	C						
3	D	Е					
4	E	F	G				
5	F	G	A	В			
6	G	Α	В	С	D		
7	A	В	С	D	Е	F	
8	В	D	F	Α	С	Е	G

Each treatment occurs exactly once with each individual.

Bailey



Each treatment occurs exactly once with each individual. Any subset of treatments may be merged into a single treatment.

When m is odd, p_A must even for every treatment A.

Bailey Triangular association schemes BCC 2024 15/24

When m is odd, p_A must even for every treatment A. If $p_A = 2$ for every treatment A then m = 2t + 1.

When m is odd, p_A must even for every treatment A.

If $p_A = 2$ for every treatment A then m = 2t + 1.

Now label the treatments by $\{1, 2, ..., t\}$.

The treatment applied to the pair $\{i, j\}$ is whichever is smaller of the differences i - j and j - i modulo m.

When m is odd, p_A must even for every treatment A.

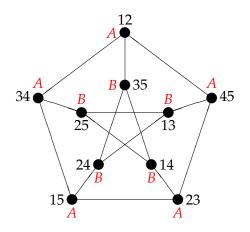
If $p_A = 2$ for every treatment A then m = 2t + 1.

Now label the treatments by $\{1, 2, ..., t\}$.

The treatment applied to the pair $\{i, j\}$ is whichever is smaller of the differences i - j and j - i modulo m.

When m = 9 this gives

	1	2	3	4	5	6	7	8	
2	1								
3	2	1							
4	3	2	1						
5	4	3	2	1					
6	4	4	3	2	1				
7	3	4	4	3	2	1			
8	2	3	4	4	3	2	1		
9	1	2	3	4	4	3	2	1	



Here *A* represents $\pm 1 \mod 5$ and *B* represents $\pm 2 \mod 5$.

Bailey Triangular association schemes BCC 2024 16/24

(b) $V_T \leq W_0 \oplus W_1$.

(b) $V_T \leq W_0 \oplus W_1$.

There is essentially only one solution.

There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs.

(b) $V_T \leq W_0 \oplus W_1$.

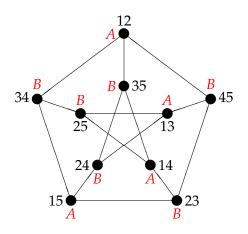
There is essentially only one solution.

There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs. When m = 9 this gives

	1	2	3	4	5	6	7	8	
2	A								
3	A	В							
4	A	В	В						
5	A	В	В	В					
6	A	В	В	В	В				
7	A	В	В	В	В	В			
8	A	В	В	В	В	В	В		
9	A	В	В	В	В	В	В	В	

Bailey

Solution (b) for Condition 2 when m = 5



The two treatments are not equally replicated.

Bailey Triangular association schemes BCC 2024 18/24

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Bailey Triangular association schemes BCC 2024 19/2

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where n > 2.

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$
 - Here is a very general solution.
 - ▶ Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where n > 2.
 - If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort *i*, using t_i treatments forming a set \mathcal{T}_i .

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.
 - Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
 - ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
 - ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.
 - Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
 - ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
 - ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
 - If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).
- ▶ If i < j then let t_{ij} be any common divisor of s_i and s_j . Make a set \mathcal{T}_{ij} of t_{ij} treatments. Allocate these to the cells in the rectangle $\mathcal{S}_j \times \mathcal{S}_i$ in such a way that all treatments appear equally often in each row and equally often in each column.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

Triangular association schemes

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).
- ▶ If i < j then let t_{ij} be any common divisor of s_i and s_j . Make a set \mathcal{T}_{ij} of t_{ij} treatments. Allocate these to the cells in the rectangle $\mathcal{S}_j \times \mathcal{S}_i$ in such a way that all treatments appear equally often in each row and equally often in each column.
- ▶ If i < j and $s_i = s_j = 1$ then \mathcal{T}_{ij} has a single treatment with replication 1, so avoid this case.

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
 1 on all pairs which involve a single individual of sort i
 2 on all pairs which involve two individuals of sort i

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
 1 on all pairs which involve a single individual of sort i
 2 on all pairs which involve two individuals of sort i

Then

▶ The vectors $\mathbf{w}_1, ..., \mathbf{w}_n$ span an n-dimensional subspace of $V_T \cap (W_0 \oplus W_1)$.

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
 1 on all pairs which involve a single individual of sort i
 2 on all pairs which involve two individuals of sort i

Then

- ► The vectors $\mathbf{w}_1, ..., \mathbf{w}_n$ span an n-dimensional subspace of $V_T \cap (W_0 \oplus W_1)$.
- ▶ If $\mathbf{v} \in V_T$ is orthogonal to \mathbf{w}_i for i = 1, ..., n then $\mathbf{v} \in W_2$.

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	Α	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	I	G	Н	F	E

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	I	G	Н	F	Ε

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

Bailey

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	I	
9	С	D	В	I	G	H	F	E

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

 $S_2 = \{4, 5, 6, 7, 8, 9\}, T_2 = \{E, F, G, H, I\} \text{ and } t_2 = 5.$

Bailey

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	A						
4	В	С	D					
5	В	С	D	Е				
6	D	В	C	F	I			
7	D	В	C	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	I	G	Н	F	E

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

 $S_2 = \{4, 5, 6, 7, 8, 9\}, T_2 = \{E, F, G, H, I\} \text{ and } t_2 = 5.$

 $\mathcal{T}_{12} = \{B, C, D\}$ and $t_{12} = 3$.

	1	2	3	4	5	6	7	8
2	A							
3	Α	В						
4	A	С	D					
5	A	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	Е	I	F	G	Н	L	K	J

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D					
5	A	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}$$
, $T_1 = \emptyset$ and $t_1 = 0$.

Here m = 9, n = 3, $s_1 = 1$, $s_2 = 4$, $s_3 = 4$ and t = 12.

	_				-			
	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D					
5	A	D	С	В				
6	Ε	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	Е	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$

Triangular association schemes

Bailev

1 2 3 4 5 6 7 8 2 A 3 A B 4 A C D 5 A D C B 6 E F G H I 7 E G H I F J		_				-			
3 A B 4 A C D 5 A D C B 6 E F G H I		1	2	3	4	5	6	7	8
4 A C D 5 A D C B 6 E F G H I	2	A							
5 A D C B 6 E F G H I	3	A	В						
6 E F G H I	4	A	С	D					
	5	A	D	С	В				
7 E G H I F J	6	Е	F	G	Н	I			
	7	Е	G	Н	I	F	J		
8 E H I F G K L	8	Ε	Н	I	F	G	K	L	
9 E I F G H L K J	9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$

$$S_3 = \{6, 7, 8, 9\}, T_3 = \{I, K, L\} \text{ and } t_3 = 3.$$

	1	2	3	4	5	6	7	8
2	A							
3	Α	В						
4	Α	С	D					
5	A	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$
 $S_3 = \{6, 7, 8, 9\}, T_3 = \{I, K, L\} \text{ and } t_3 = 3.$

$$\mathcal{T}_{12} = \{A\} \text{ and } t_{12} = 1.$$

Here m = 9, n = 3, $s_1 = 1$, $s_2 = 4$, $s_3 = 4$ and t = 12.

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D					
5	A	D	С	В				
6	Ε	F	G	Н	I			
7	E	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$ $S_3 = \{6, 7, 8, 9\}, T_3 = \{I, K, L\} \text{ and } t_3 = 3.$

$$\mathcal{T}_{12} = \{A\}$$
 and $t_{12} = 1$. $\mathcal{T}_{13} = \{E\}$ and $t_{13} = 1$.

Here m = 9, n = 3, $s_1 = 1$, $s_2 = 4$, $s_3 = 4$ and t = 12.

$$S_1 = \{1\}$$
, $T_1 = \emptyset$ and $t_1 = 0$.

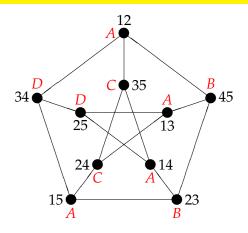
Bailev

 $\mathcal{T}_{23} = \{F, G, H, I\}$ and $t_{23} = 4$.
Triangular association schemes

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$ $S_3 = \{6,7,8,9\}, T_3 = \{I,K,L\} \text{ and } t_3 = 3.$

 $\mathcal{T}_{12} = \{A\} \text{ and } t_{12} = 1.$ $\mathcal{T}_{13} = \{E\} \text{ and } t_{13} = 1.$

Solution (c) for Condition 2 when m = 5



Treatment *A* occurs on all pairs involving individual 1. Each other treatment is involved with each other individual exactly once.

Bailey Triangular association schemes BCC 2024

23/24

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Bailey Triangular association schemes BCC 2024 24/

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Some other statisticians call Condition 2 commutative orthogonal block structure.

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Some other statisticians call Condition 2 commutative orthogonal block structure.

Some combinatorialists say that Condition 2 is satisfied if the treatments give an equitable partition of the graph.