Designs on strongly regular graphs

R. A. Bailey University of St Andrews

Queen Mary University of London (emerita)

Design and Analysis of Networked Experiments, Kings College London, 19 July 2024

Let Ω be a finite set of experimental units (for example, plots in a field).

Let Ω be a finite set of experimental units (for example, plots in a field). In the experiments that I design, there is always some kind of combinatorial structure on Ω .

Let Ω be a finite set of experimental units (for example, plots in a field). In the experiments that I design, there is always some kind of combinatorial structure on Ω . For this talk, the combinatorial structure is a network.

Let Ω be a finite set of experimental units (for example, plots in a field). In the experiments that I design, there is always some kind of combinatorial structure on Ω . For this talk, the combinatorial structure is a network. This can be considered to be a graph Γ with vertex-set Ω .

Let Ω be a finite set of experimental units (for example, plots in a field). In the experiments that I design, there is always some kind of combinatorial structure on Ω . For this talk, the combinatorial structure is a network. This can be considered to be a graph Γ with vertex-set Ω . This graph is regular if there is some constant d such that every vertex is contained in d edges.

Let Ω be a finite set of experimental units (for example, plots in a field). In the experiments that I design, there is always some kind of combinatorial structure on Ω . For this talk, the combinatorial structure is a network. This can be considered to be a graph Γ with vertex-set Ω . This graph is regular if there is some constant d such that every vertex is contained in d edges.

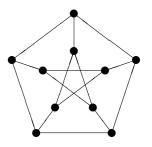
The graph Γ is strongly regular if

it is regular;

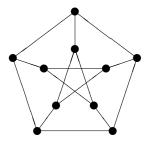
Bailev

- ▶ if two vertices are joined by an edge, then they have *p* common neighbours, for some constant *p*;
- if two vertices are not joined by an edge, then they have q common neighbours, for some constant q;
- the graph is neither complete nor null.

This is a famous strongly regular graph.

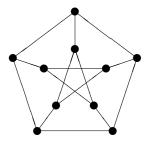


This is a famous strongly regular graph.



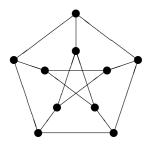
It has 10 vertices, each having degree 3.

This is a famous strongly regular graph.



It has 10 vertices, each having degree 3. If two vertices are joined by an edge, then they have no common neighbours.

This is a famous strongly regular graph.



It has 10 vertices, each having degree 3.

If two vertices are joined by an edge, then they have no common neighbours.

If two vertices are not joined by an edge, then they have exactly one common neighbour.

Suppose that Γ is a strongly regular graph with vertex-set Ω .

Suppose that Γ is a strongly regular graph with vertex-set Ω . Here are three $\Omega \times \Omega$ real matrices associated with Γ :

- ▶ the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- ▶ the identity matrix *I*;
- ▶ the all-1 matrix *J*.

Suppose that Γ is a strongly regular graph with vertex-set Ω . Here are three $\Omega \times \Omega$ real matrices associated with Γ :

- ▶ the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- ▶ the identity matrix *I*;
- ▶ the all-1 matrix *J*.

Because the graph Γ is strongly regular, A^2 is a linear combination of A, I and J.

Suppose that Γ is a strongly regular graph with vertex-set Ω . Here are three $\Omega \times \Omega$ real matrices associated with Γ :

- ► the adjacency matrix *A* has $A_{\alpha,\beta} = 1$ if {α, β} is an edge, and all other entries zero;
- the identity matrix *I*;
- ▶ the all-1 matrix *J*.

Because the graph Γ is strongly regular, A^2 is a linear combination of A, I and J.

In this case, the real vector space \mathbb{R}^{Ω} is the orthogonal direct sum of subspaces W_0 , W_1 and W_2 , each of which is (contained in) an eigenspace of A and an eigenspace of J, where W_0 is the one-dimensional subspace spanned by the all-1 vector \mathbf{u} .

Suppose that Γ is a strongly regular graph with vertex-set Ω . Here are three $\Omega \times \Omega$ real matrices associated with Γ :

- ▶ the adjacency matrix A has $A_{\alpha,\beta} = 1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix *I*;
- ▶ the all-1 matrix *J*.

Because the graph Γ is strongly regular, A^2 is a linear combination of A, I and J.

In this case, the real vector space \mathbb{R}^{Ω} is the orthogonal direct sum of subspaces W_0 , W_1 and W_2 , each of which is (contained in) an eigenspace of A and an eigenspace of J, where W_0 is the one-dimensional subspace spanned by the all-1 vector \mathbf{u} . (I will identify W_1 and W_2 later, as these depend on Γ .)

A combinatorial structure on a finite set \rightarrow

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

How should we design an experiment with certain numbers specified? \rightarrow

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

How should we design an experiment with certain numbers specified? \rightarrow

Assumptions about some relevant random variables \rightarrow

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

How should we design an experiment with certain numbers specified? \rightarrow

Assumptions about some relevant random variables \rightarrow Eigenspaces, so back to linear algebra.

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

How should we design an experiment with certain numbers specified? \rightarrow

Assumptions about some relevant random variables \rightarrow Eigenspaces, so back to linear algebra.

I will describe two different desirable statistical conditions that translate easily into combinatorics and linear algebra.

A combinatorial structure on a finite set \rightarrow Commutative linear algebra over a finite-dimensional real vector space.

How should we design an experiment with certain numbers specified? \rightarrow

Assumptions about some relevant random variables \rightarrow Eigenspaces, so back to linear algebra.

I will describe two different desirable statistical conditions that translate easily into combinatorics and linear algebra.

I will illustrate each of these conditions when applied to the same two combinatorial objects (aka networks).

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$. Assume that

$$\operatorname{Cov}(Y_{\alpha},Y_{\beta}) = \left\{ \begin{array}{ll} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha,\beta\} \text{ is an edge of } \Gamma \\ \rho_2 \sigma^2 & \text{otherwise.} \end{array} \right.$$

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$. Assume that

$$\operatorname{Cov}(Y_{\alpha},Y_{\beta}) = \left\{ \begin{array}{ll} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha,\beta\} \text{ is an edge of } \Gamma \\ \rho_2 \sigma^2 & \text{otherwise.} \end{array} \right.$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 .

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } \Gamma \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 .

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f \colon \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } \Gamma \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 . We do not know the values of γ_0 , γ_1 and γ_2 in advance.

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \to \mathcal{T}$ allocating treatment $f(\omega)$ to vertex ω . How should we choose f?

For each ω in Ω , there is a random variable Y_{ω} , which we will measure.

Assume that, for each treatment C, there is an unknown constant τ_C such that $\mathbb{E}(Y_\omega) = \tau_C$ if $f(\omega) = C$. Assume that

$$Cov(Y_{\alpha}, Y_{\beta}) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho_1 \sigma^2 & \text{if } \alpha \neq \beta \text{ and } \{\alpha, \beta\} \text{ is an edge of } \Gamma \\ \rho_2 \sigma^2 & \text{otherwise.} \end{cases}$$

The eigenspaces of Cov(Y) are W_0 , W_1 and W_2 . Call the corresponding eigenvalues γ_0 , γ_1 and γ_2 . We do not know the values of γ_0 , γ_1 and γ_2 in advance. When is the choice of best design not affected by the values of γ_0 , γ_1 and γ_2 ?

Designs on strongly regular graphs

6/35

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

- Condition 1 We want the variance V_{CD} of the estimator of $\tau_C \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.
 - Solution Allocate treatments to the vertices of Γ so that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with C at one end and D at the other.

- Condition 1 We want the variance V_{CD} of the estimator of $\tau_C \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.
 - Solution Allocate treatments to the vertices of Γ so that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with C at one end and D at the other.
- Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for vertices with treatment C and those with treatment D.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

Solution Allocate treatments to the vertices of Γ so that, for all pairs $\{C,D\}$ of distinct treatments, there are λ edges with C at one end and D at the other.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for vertices with treatment C and those with treatment D.

Solution The subspace V_T of \mathbb{R}^Ω consisting of vectors which are constant on each treatment can be orthogonally decomposed as

$$W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$$

7/35

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k.

Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

If $\gamma_1 \neq \gamma_2$ and k < t then the only way to achieve this is to use a balanced incomplete-block design.

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

If $\gamma_1 \neq \gamma_2$ and k < t then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{C, D\}$ of distinct treatments, there are λ blocks in which C and D both occur.

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

If $\gamma_1 \neq \gamma_2$ and k < t then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{C, D\}$ of distinct treatments, there are λ blocks in which C and D both occur. If k = t then each block must contain every treatment.

This is probably the best-known combinatorial structure in Design of Experiments.

The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices. This is strongly regular.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

If $\gamma_1 \neq \gamma_2$ and k < t then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{C, D\}$ of distinct treatments, there are λ blocks in which C and D both occur. If k = t then each block must contain every treatment. If k > t then something slightly more complicated is needed.

An example of a balanced incomplete-block design

Here is a balanced incomplete-block design with b = 14, k = 4, t = 8 and $\lambda = 3$.

1	3	5	7	2	4	6	8
1	2	5	6	3	4	7	8
1	2	3	4	5	6	7	8
1	4	5	8	2	3	6	7
1	3	6	8	2	4	5	7
1	2	7	8	3	4	5	6
1	4	6	7	2	3	5	8

Previously I said that, in order to satisfy Condition 1 when k < t, no treatment can occur more than once in any block. That was a lie.

Previously I said that, in order to satisfy Condition 1 when k < t, no treatment can occur more than once in any block. That was a lie.

Here is an example with b = 7, k = 3, t = 5 and $\lambda = 2$.

1 1 2	1 3	4	1	3	5	1	4	5
	2 3	4	2	3	5	2	4	5

Previously I said that, in order to satisfy Condition 1 when k < t, no treatment can occur more than once in any block. That was a lie.

Here is an example with b = 7, k = 3, t = 5 and $\lambda = 2$.

1 1 2	1	3	4	1	3	5	1	4	5
	2	3	4	2	3	5	2	4	5

There are many different optimality criteria for designs for experiments.

This design is actually the best on one of these criteria.

Previously I said that, in order to satisfy Condition 1 when k < t, no treatment can occur more than once in any block. That was a lie.

Here is an example with b = 7, k = 3, t = 5 and $\lambda = 2$.

1 1 2	1	3	4	1	3	5	1	4	5
	2	3	4	2	3	5	2	4	5

There are many different optimality criteria for designs for experiments.

This design is actually the best on one of these criteria. I don't want to get bogged down in the statistical details, so I will say no more about this here.

The set Ω is partitioned into b blocks, each of size k.

The set Ω is partitioned into b blocks, each of size k. Let V_B be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.

The set Ω is partitioned into b blocks, each of size k. Let V_B be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block. Then $W_0 = \langle \mathbf{u} \rangle$, $W_1 = V_B \cap W_0^{\perp}$ and $W_2 = V_B^{\perp}$.

The set Ω is partitioned into b blocks, each of size k. Let V_B be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.

Then $W_0 = \langle \mathbf{u} \rangle$, $W_1 = V_B \cap W_0^{\perp}$ and $W_2 = V_B^{\perp}$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for plots with treatment C and those with treatment D.

The set Ω is partitioned into b blocks, each of size k. Let V_B be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.

Then $W_0 = \langle \mathbf{u} \rangle$, $W_1 = V_B \cap W_0^{\perp}$ and $W_2 = V_B^{\perp}$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for plots with treatment C and those with treatment D.

Since the treatment subspace V_T contains W_0 , there are three possibilities.

The set Ω is partitioned into b blocks, each of size k. Let V_B be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.

Then
$$W_0 = \langle \mathbf{u} \rangle$$
, $W_1 = V_B \cap W_0^{\perp}$ and $W_2 = V_B^{\perp}$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for plots with treatment C and those with treatment D.

Since the treatment subspace V_T contains W_0 , there are three possibilities.

Design and Analysis of Networked Experiments

- (a) $V_T < W_0 \oplus W_2$.
- (b) $V_T \leq W_0 \oplus W_1$.

Designs on strongly regular graphs

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and

 $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$

(a) $V_T \leq W_0 \oplus W_2$.

(a) $V_T < W_0 \oplus W_2$.

There are *k* treatments, and each occurs exactly once in each block. This is called a complete-block design.

(a) $V_T \leq W_0 \oplus W_2$.

There are k treatments, and each occurs exactly once in each block. This is called a complete-block design. For example, when b = 4 and k = 3 we get

(a) $V_T \leq W_0 \oplus W_2$.

There are k treatments, and each occurs exactly once in each block. This is called a complete-block design. For example, when b=4 and k=3 we get

More generally, any subset of treatments may be merged into a single treatment. For example,

(b) $V_T \leq W_0 \oplus W_1$.

(b) $V_T \leq W_0 \oplus W_1$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b/t whole blocks.

(b) $V_T \leq W_0 \oplus W_1$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b/t whole blocks. For example, when b=4, k=3 and t=2 we get

1	1	1	ח	ח	ח	Λ	1	1	l	ח	ח	D
$\perp A$	$\mid A \mid$	A	В	B	В	1 <i>A</i> 1	1 <i>A</i> 1	A	l	l B	B	В
			_	_	~				l	_	_	~

(b) $V_T \leq W_0 \oplus W_1$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b/t whole blocks. For example, when b=4, k=3 and t=2 we get

Such designs are used when management constraints make it impractical to apply the treatments to the individual plots.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. We combine the two previous approaches. The treatment set is $\mathcal{T}_1 \times \mathcal{T}_2$, where $|\mathcal{T}_1| = t_1$, which divides b, and $|\mathcal{T}_2| = k$.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. We combine the two previous approaches. The treatment set is $\mathcal{T}_1 \times \mathcal{T}_2$, where $|\mathcal{T}_1| = t_1$, which divides b, and $|\mathcal{T}_2| = k$. Each item from \mathcal{T}_2 is applied to one plot per block.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. We combine the two previous approaches. The treatment set is $\mathcal{T}_1 \times \mathcal{T}_2$, where $|\mathcal{T}_1| = t_1$, which divides b, and $|\mathcal{T}_2| = k$. Each item from \mathcal{T}_2 is applied to one plot per block. Each item from \mathcal{T}_1 is applied to b/t_1 whole blocks.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. We combine the two previous approaches. The treatment set is $\mathcal{T}_1 \times \mathcal{T}_2$, where $|\mathcal{T}_1| = t_1$, which divides b, and $|\mathcal{T}_2| = k$. Each item from \mathcal{T}_2 is applied to one plot per block. Each item from \mathcal{T}_1 is applied to b/t_1 whole blocks. For example, when b = 4, k = 3, t = 6 and $t_1 = 2$ we get

A1 | A2 | A3

B1 | B2 | B3

A1 | A2 | A3

B1 B2 B3

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. We combine the two previous approaches. The treatment set is $\mathcal{T}_1 \times \mathcal{T}_2$, where $|\mathcal{T}_1| = t_1$, which divides b, and $|\mathcal{T}_2| = k$. Each item from \mathcal{T}_2 is applied to one plot per block. Each item from \mathcal{T}_1 is applied to b/t_1 whole blocks. For example, when b = 4, k = 3, t = 6 and $t_1 = 2$ we get

These are called split-plot designs, and are widely used in practice.

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between *m* parental lines, excluding self-crosses.

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.

This structure is also useful in experiments where pairs of individuals are required to complete some task, with both individuals playing the same role.

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.

This structure is also useful in experiments where pairs of individuals are required to complete some task, with both individuals playing the same role.

This happens in some experiments in human-computer interaction (which I was involved in at QMUL).

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.

This structure is also useful in experiments where pairs of individuals are required to complete some task, with both individuals playing the same role.

This happens in some experiments in human-computer interaction (which I was involved in at QMUL).

For example, the aim of the experiment might be to compare different methods for researchers to collaborate when they are unable to meet face-to-face, such as email, online meetings, old-fashioned letters, telephone calls with and without video.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1, 2, ..., m\}$ of m distinct individuals, where $m \ge 4$.

Now the set Ω consists of all unordered pairs from the set $\{1, 2, ..., m\}$ of m distinct individuals, where $m \geq 4$. These form the vertices of the graph Γ .

Now the set Ω consists of all unordered pairs from the set $\{1,2,\ldots,m\}$ of m distinct individuals, where $m \geq 4$.

These form the vertices of the graph Γ .

There is an edge between two distinct vertices if and only if they have an individual in common.

Now the set Ω consists of all unordered pairs from the set $\{1,2,\ldots,m\}$ of m distinct individuals, where $m \geq 4$.

These form the vertices of the graph Γ .

There is an edge between two distinct vertices if and only if they have an individual in common.

Thus every vertex is joined to 2(m-2) other vertices.

Now the set Ω consists of all unordered pairs from the set $\{1,2,\ldots,m\}$ of m distinct individuals, where $m \geq 4$.

These form the vertices of the graph Γ .

There is an edge between two distinct vertices if and only if they have an individual in common.

Thus every vertex is joined to 2(m-2) other vertices.

This is called the triangular graph T(m).

Now the set Ω consists of all unordered pairs from the set $\{1,2,\ldots,m\}$ of m distinct individuals, where $m \geq 4$.

These form the vertices of the graph Γ .

There is an edge between two distinct vertices if and only if they have an individual in common.

Thus every vertex is joined to 2(m-2) other vertices.

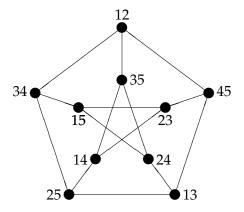
This is called the triangular graph T(m).

It is strongly regular, and its adjacency matrix A satisfies

$$A^2 = (2m - 8)I + (m - 6)A + 4J.$$

The Petersen graph again

This labelling of the vertices shows that it is the complement of the triangular graph T(5).



Bailey

When m = 6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

When m=6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3					
4					
5					
6					

When m=6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3					
4					
5			*		
6					

$$* = {3,5}$$

When m=6 the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3	0	0			
4			0		
5	0	0	*	0	
6			0		0

$$* = {3,5}$$

 \circ = vertices joined to vertex $\{3,5\}$

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with C at one end and D at the other.

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with C at one end and D at the other.

If m is odd and t = m we can do this by using a symmetric, idempotent Latin square of order *m* and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order *m*.)

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with *C* at one end and *D* at the other.

If m is odd and t = m we can do this by using a symmetric, idempotent Latin square of order *m* and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order *m*.) Then each treatment occurs on (m-1)/2 plots, and $\lambda = m-2$.

19/35

Condition 1 We want the variance V_{CD} of the estimator of $\tau_C - \tau_D$ to be the same for all pairs $\{C, D\}$ of distinct treatments.

We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{C, D\}$ of distinct treatments, there are λ edges with *C* at one end and *D* at the other.

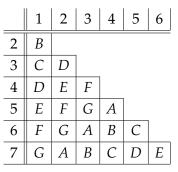
If m is odd and t = m we can do this by using a symmetric, idempotent Latin square of order *m* and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once). (Use the Cayley table of any Abelian group of odd order *m*.) Then each treatment occurs on (m-1)/2 plots, and $\lambda = m-2$. In fact, each treatment misses one individual and occurs once with every other individual.

Bailev

	1	2	3	4	5	6
2	В					
3	С	D				
4	D	Е	F			
5	Е	F	G	Α		
6	F	G	A	В	С	
7	G	A	В	C	D	Ε

	1	2	3	4	5	6
2	В					
3	С	D				
4	D	Е	F			
5	Е	F	G	Α		
6	F	G	A	В	С	
7	G	A	В	С	D	Ε

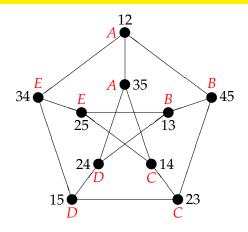
Treatment *A* occurs once with every individual except individual 1.



Treatment *A* occurs once with every individual except individual 1.

For strongly regular graphs in general, such designs are called balanced colourings of strongly regular graphs.

This design on the Petersen graph



For each treatment, there is one edge that has that treatment on both vertices.

For each pair of distinct treatments, there is one edge that has them on its endpoints.

For i = 1, ..., m, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_1, ..., \mathbf{v}_m$.

For $i=1,\ldots,m$, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^Ω spanned by $\mathbf{v}_1,\ldots,\mathbf{v}_m$. Then $W_0=\langle\mathbf{u}\rangle$, $W_1=V_{\mathrm{ind}}\cap W_0^\perp$ and $W_2=V_{\mathrm{ind}}^\perp$.

For i = 1, ..., m, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the *m*-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_m$. Then $W_0 = \langle \mathbf{u} \rangle$, $W_1 = V_{\text{ind}} \cap W_0^{\perp}$ and $W_2 = V_{\text{ind}}^{\perp}$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for vertices with treatment C and those with treatment D.

For $i=1,\ldots,m$, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^Ω spanned by $\mathbf{v}_1,\ldots,\mathbf{v}_m$. Then $W_0=\langle \mathbf{u}\rangle$, $W_1=V_{\mathrm{ind}}\cap W_0^\perp$ and $W_2=V_{\mathrm{ind}}^\perp$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for vertices with treatment C and those with treatment D.

Since the treatment subspace V_T contains W_0 , there are three possibilities.

For i = 1, ..., m, let \mathbf{v}_i be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let V_{ind} be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_1, ..., \mathbf{v}_m$.

Then $W_0 = \langle \mathbf{u} \rangle$, $W_1 = V_{\text{ind}} \cap W_0^{\perp}$ and $W_2 = V_{\text{ind}}^{\perp}$.

Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_C - \tau_D$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_0 = \gamma_1 = \gamma_2$. This is the difference between the averages for vertices with treatment C and those with treatment D.

Since the treatment subspace V_T contains W_0 , there are three possibilities.

Design and Analysis of Networked Experiments

- (a) $V_T < W_0 \oplus W_2$.
- (b) $V_T < W_0 \oplus W_1$.

Bailey

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

 $VT = VV() \oplus (VT + VV1)$ Designs on strongly regular graphs

(a) $V_T \leq W_0 \oplus W_2$.

23/35

- (a) $V_T \le W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;

- (a) $V_T \leq W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;

Bailev

- (a) $V_T \le W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
 - if $p_A = 1$ then m is even and A occurs on m/2 pairs;

- (a) $V_T \le W_0 \oplus W_2$. For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then
 - $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
 - ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
 - if $p_A = 1$ then m is even and A occurs on m/2 pairs;
 - ▶ if this is true for all treatments then t = m 1.

(a) $V_T \leq W_0 \oplus W_2$.

For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then

- $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
- ▶ treatment A occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments A;
- if $p_A = 1$ then m is even and A occurs on m/2 pairs;
- ▶ if this is true for all treatments then t = m 1.

In this case, we can do this by using a symmetric Latin square of order *m* with a single letter on the main diagonal and omitting the main diagonal and plots above the main diagonal.

(a) $V_T \leq W_0 \oplus W_2$.

For treatment A, let p_{Ai} be the number of pairs including individual i on which A occurs. My co-authors and I were able to show that if (a) holds then

- $ightharpoonup p_{Ai} = p_{Aj} = p_A$ for all individuals i and j;
- reatment *A* occurs on $mp_A/2$ pairs, and so mp_A is even for all treatments *A*;
- if $p_A = 1$ then m is even and A occurs on m/2 pairs;
- ▶ if this is true for all treatments then t = m 1.

In this case, we can do this by using a symmetric Latin square of order *m* with a single letter on the main diagonal and omitting the main diagonal and plots above the main diagonal.

(Start with a Latin square of the previous type; add an extra row at the bottom; move every diagonal element down to the bottom row; then put a dummy like ∞ on every diagonal cell.)

	1	2	3	4	5	6	7
2	С						
3	D	Е					
4	Е	F	G				
5	F	G	Α	В			
6	G	Α	В	С	D		
7	A	В	С	D	Е	F	
8	В	D	F	A	С	Е	G

	1	2	3	4	5	6	7
2	С						
3	D	Е					
4	Е	F	G				
5	F	G	Α	В			
6	G	Α	В	С	D		
7	Α	В	С	D	Е	F	
8	В	D	F	A	С	Ε	G

Each treatment occurs exactly once with each individual.

	1	2	3	4	5	6	7
2	С						
3	D	Е					
4	Е	F	G				
5	F	G	Α	В			
6	G	Α	В	С	D		
7	A	В	С	D	Е	F	
8	В	D	F	A	С	Ε	G

Each treatment occurs exactly once with each individual. Just as with complete-block designs, any subset of treatments may be merged into a single treatment.

Solution (a) for Condition 2 when m is odd

When m is odd, p_A must even for every treatment A.

25/35

Solution (a) for Condition 2 when m is odd

When m is odd, p_A must even for every treatment A. If $p_A = 2$ for every treatment A then m = 2t + 1.

25/35

Solution (a) for Condition 2 when m is odd

When m is odd, p_A must even for every treatment A.

If $p_A = 2$ for every treatment A then m = 2t + 1.

Now label the treatments by $\{1, 2, ..., t\}$.

The treatment applied to the pair $\{i, j\}$ is whichever is smaller of the differences i - j and j - i modulo m.

Solution (a) for Condition 2 when m is odd

When m is odd, p_A must even for every treatment A.

If $p_A = 2$ for every treatment A then m = 2t + 1.

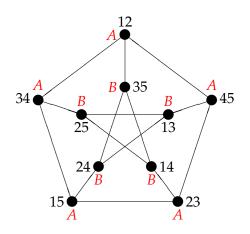
Now label the treatments by $\{1, 2, ..., t\}$.

The treatment applied to the pair $\{i,j\}$ is whichever is smaller of the differences i-j and j-i modulo m.

When m = 9 this gives

	1	2	3	4	5	6	7	8	
2	1								
3	2	1							
4	3	2	1						
5	4	3	2	1					
6	4	4	3	2	1				
7	3	4	4	3	2	1			
8	2	3	4	4	3	2	1		
9	1	2	3	4	4	3	2	1	

Solution (a) for Condition 2 when m=5



Here *A* represents $\pm 1 \mod 5$ and *B* represents $\pm 2 \mod 5$.

(b) $V_T \leq W_0 \oplus W_1$.

(b) $V_T \leq W_0 \oplus W_1$.

There is essentially only one solution.

There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs.

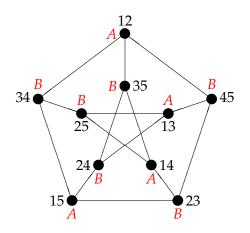
(b) $V_T \leq W_0 \oplus W_1$.

There is essentially only one solution.

There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs. When m = 9 this gives

	1	2	3	4	5	6	7	8	
2	A								
3	A	В							
4	A	В	В						
5	A	В	В	В					
6	A	В	В	В	В				
7	A	В	В	В	В	В			
8	A	В	В	В	В	В	В		
9	A	В	В	В	В	В	В	В	

Solution (b) for Condition 2 when m = 5



The two treatments are not equally replicated.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$. Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.

29/35

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2).$ Here is a very general solution.
 - Partition the set of individuals into *n* sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
 - If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort *i*, using t_i treatments forming a set \mathcal{T}_i .

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.
 - Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
 - ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
 - ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.

- (c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.
 - Here is a very general solution.
 - Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
 - ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
 - ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
 - If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).
- ▶ If i < j then let t_{ij} be any common divisor of s_i and s_j . Make a set \mathcal{T}_{ij} of t_{ij} treatments. Allocate these to the cells in the rectangle $\mathcal{S}_j \times \mathcal{S}_i$ in such a way that all treatments appear equally often in each row and equally often in each column.

(c) $V_T \cap W_1$ and $V_T \cap W_2$ are both non-zero, and $V_T = W_0 \oplus (V_T \cap W_1) \oplus (V_T \cap W_2)$.

Here is a very general solution.

- Partition the set of individuals into n sorts $S_1, ..., S_n$ of size $s_1, ..., s_n$, where $n \ge 2$.
- ▶ If $s_i > 1$ then put a solution (a) design on pairs of individuals of sort i, using t_i treatments forming a set \mathcal{T}_i .
- ▶ If $s_i = 2$ then \mathcal{T}_i has a single treatment with replication 1, so avoid this case.
- If $s_i = 3$ then the only way to avoid replication 1 is to have $t_i = 1$.
- If n = 2 and $s_1 = 1$ then make sure that $t_2 > 1$, to avoid solution (b).
- ▶ If i < j then let t_{ij} be any common divisor of s_i and s_j . Make a set \mathcal{T}_{ij} of t_{ij} treatments. Allocate these to the cells in the rectangle $\mathcal{S}_j \times \mathcal{S}_i$ in such a way that all treatments appear equally often in each row and equally often in each column.
- ▶ If i < j and $s_i = s_j = 1$ then \mathcal{T}_{ij} has a single treatment with replication 1, so avoid this case.

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
 1 on all pairs which involve a single individual of sort i
 2 on all pairs which involve two individuals of sort i

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
1 on all pairs which involve a single individual of sort i
2 on all pairs which involve two individuals of sort i

Then

► The vectors $\mathbf{w}_1, ..., \mathbf{w}_n$ span an n-dimensional subspace of $V_T \cap (W_0 \oplus W_1)$.

Theorem about this solution

Theorem

```
For i = 1, ..., n, let \mathbf{w}_i be the vector whose entries are
```

0 on all pairs which do not involve an individual of sort i
1 on all pairs which involve a single individual of sort i
2 on all pairs which involve two individuals of sort i

Then

- ► The vectors $\mathbf{w}_1, ..., \mathbf{w}_n$ span an n-dimensional subspace of $V_T \cap (W_0 \oplus W_1)$.
- ▶ If $\mathbf{v} \in V_T$ is orthogonal to \mathbf{w}_i for i = 1, ..., n then $\mathbf{v} \in W_2$.

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	I	G	Н	F	Ε

31/35

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	Α	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Ε		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	Ι	G	Н	F	Е

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	С	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	С	D	В	I	G	H	F	E

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

 $S_2 = \{4, 5, 6, 7, 8, 9\}, T_2 = \{E, F, G, H, I\} \text{ and } t_2 = 5.$

Here m = 9, n = 2, $s_1 = 3$, $s_2 = 6$ and t = 9.

	1	2	3	4	5	6	7	8
2	A							
3	A	Α						
4	В	С	D					
5	В	С	D	Е				
6	D	В	C	F	I			
7	D	В	С	G	Н	Е		
8	С	D	В	Н	F	G	Ι	
9	C	D	В	I	G	Н	F	Ε

$$S_1 = \{1, 2, 3\}, T_1 = \{A\} \text{ and } t_1 = 1.$$

 $S_2 = \{4, 5, 6, 7, 8, 9\}, T_2 = \{E, F, G, H, I\} \text{ and } t_2 = 5.$

 $\mathcal{T}_{12} = \{B, C, D\}$ and $t_{12} = 3$.

	1	2	3	4	5	6	7	8
2	A							
3	Α	В						
4	A	С	D					
5	Α	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	Е	I	F	G	Н	L	K	J

	1	2	3	4	5	6	7	8
2	A							
3	Α	В						
4	Α	С	D					
5	Α	D	С	В				
6	Ε	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}$$
, $T_1 = \emptyset$ and $t_1 = 0$.

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	C	D					
5	A	D	С	В				
6	Ε	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	Е	Ι	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

$$S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$$

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D					
5	A	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	Е	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\}$

$$S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$$

$$S_3 = \{6, 7, 8, 9\}, T_3 = \{J, K, L\} \text{ and } t_3 = 3.$$

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D		_			
5	A	D	С	В				
6	Е	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$

$$S_3 = \{6,7,8,9\}, T_3 = \{J,K,L\} \text{ and } t_3 = 3.$$

$$\mathcal{T}_{12} = \{A\} \text{ and } t_{12} = 1.$$

Here m = 9, n = 3, $s_1 = 1$, $s_2 = 4$, $s_3 = 4$ and t = 12.

	1	2	3	4	5	6	7	8
2	A							
3	Α	В						
4	A	С	D					
5	A	D	С	В				
6	E	F	G	Н	I			
7	E	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$ $S_3 = \{6,7,8,9\}, T_3 = \{I,K,L\} \text{ and } t_3 = 3.$

$$\mathcal{T}_{12} = \{A\} \text{ and } t_{12} = 1.$$
 $\mathcal{T}_{13} = \{E\} \text{ and } t_{13} = 1.$

Here m = 9, n = 3, $s_1 = 1$, $s_2 = 4$, $s_3 = 4$ and t = 12.

	1	2	3	4	5	6	7	8
2	A							
3	A	В						
4	A	С	D					
5	A	D	С	В				
6	Ε	F	G	Н	I			
7	Е	G	Н	I	F	J		
8	Е	Н	I	F	G	K	L	
9	E	I	F	G	Н	L	K	J

$$S_1 = \{1\}, T_1 = \emptyset \text{ and } t_1 = 0.$$

 $S_2 = \{2, 3, 4, 5\}, T_2 = \{B, C, D\} \text{ and } t_2 = 3.$

 $S_3 = \{6,7,8,9\}, T_3 = \{I,K,L\} \text{ and } t_3 = 3.$

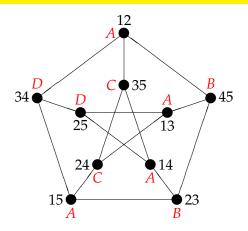
 $\mathcal{T}_{12} = \{A\} \text{ and } t_{12} = 1.$ $\mathcal{T}_{13} = \{E\} \text{ and } t_{13} = 1.$

 $\mathcal{T}_{23} = \{F, G, H, I\}$ and $t_{23} = 4$.

Design and Analysis of Networked Experiments

32/35

Solution (c) for Condition 2 when m = 5



Treatment *A* occurs on all pairs involving individual 1. Each other treatment is involved with each other individual exactly once.

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Some other statisticians call Condition 2 commutative orthogonal block structure.

Terminology

For a wide range of structures on the set Ω , some statisticians call Condition 2 equivalent estimation.

Some other statisticians call Condition 2 commutative orthogonal block structure.

Some combinatorialists say that Condition 2 is satisfied if the treatments give an equitable partition of the graph.

References

▶ R. A. Bailey: Balanced colourings of strongly regular graphs. *Discrete Mathematics* **293** (2005), 73–90. doi: 10.1016/j.disc.2004.08.022

References

- R. A. Bailey: Balanced colourings of strongly regular graphs. Discrete Mathematics 293 (2005), 73–90. doi: 10.1016/j.disc.2004.08.022
- R. A. Bailey, Peter J. Cameron, Dário Ferreira, Sandra S. Ferreira and Célia Nunes: Designs for half-diallel experiments with commutative orthogonal block structure. *Journal of Statistical Planning and Inference*, 231 (2024), 106139. doi: 10.1016/j.jspi.2023.106139