# From partitions to diagonal structures and beyond 

R. A. Bailey<br>University of St Andrews<br>

Combinatorics, Computing, Group Theory and Applications, South Florida

August 2022

## Outline

## 1. Partitions

## Outline

## 1. Partitions <br> 2. Some statistical history

## Outline

## 1. Partitions

2. Some statistical history
3. Diagonal semilattices

## Outline

## 1. Partitions

2. Some statistical history
3. Diagonal semilattices
4. Diagonal graphs

## Outline

\author{

1. Partitions <br> 2. Some statistical history <br> 3. Diagonal semilattices <br> 4. Diagonal graphs <br> 5. ... and beyond.
}

## Chapter 1

## Partitions

## What is a Latin square?

## Definition

Let $n$ be a positive integer.
A Latin square of order $n$ is an $n \times n$ array of cells in which $n$ symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

## What is a Latin square?

## Definition

Let $n$ be a positive integer.
A Latin square of order $n$ is an $n \times n$ array of cells in which $n$ symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

## What is a Latin square?

## Definition

Let $n$ be a positive integer.
A Latin square of order $n$ is an $n \times n$ array of cells in which $n$ symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

A Latin square of order 8


## Partitions

## Definition

A partition of a set $\Omega$ is a set $P$ of pairwise disjoint non-empty subsets of $\Omega$, called parts, whose union is $\Omega$.

## Partitions

## Definition

A partition of a set $\Omega$ is a set $P$ of pairwise disjoint non-empty subsets of $\Omega$, called parts, whose union is $\Omega$.

## Definition

A partition $P$ is uniform if all of its parts have the same size, in the sense that, whenever $\Gamma_{1}$ and $\Gamma_{2}$ are parts of $P$, there is a bijection from $\Gamma_{1}$ onto $\Gamma_{2}$.

## Partitions

## Definition

A partition of a set $\Omega$ is a set $P$ of pairwise disjoint non-empty subsets of $\Omega$, called parts, whose union is $\Omega$.
Definition
A partition $P$ is uniform if all of its parts have the same size, in the sense that, whenever $\Gamma_{1}$ and $\Gamma_{2}$ are parts of $P$, there is a bijection from $\Gamma_{1}$ onto $\Gamma_{2}$.
Example
If $\Omega$ is the set of cells in a Latin square, then there are five natural uniform partitions of $\Omega$ :
$R$ each part is a row;
$C$ each part is a column;
$L$ each part consists of the those cells with a given letter;
$U$ the universal partition, with a single part;
$E$ the equality partition, whose parts are singletons.

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$. ( $P$ is finer than or equal to $Q$.)

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$. ( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$.

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$. ( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$. Definition
The infimum, or meet, of partitions $P$ and $Q$ is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of $P$ and a part of $Q$.

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$. ( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$. Definition The infimum, or meet, of partitions $P$ and $Q$ is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of $P$ and a part of $Q$. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$;

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$.
( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$.
Definition
The infimum, or meet, of partitions $P$ and $Q$ is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of $P$ and a part of $Q$. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$.
( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$.
Definition
The infimum, or meet, of partitions $P$ and $Q$
is the partition $P \wedge Q$ each of whose parts is
a non-empty intersection of a part of $P$ and a part of $Q$.
So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$;
and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.
Definition
The supremum, or join, of partitions $P$ and $Q$
is the partition $P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$ and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.

## The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of $P$ is contained in a part of $Q$.
( $P$ is finer than or equal to $Q$.) So $E \preccurlyeq P \preccurlyeq U$ for all partitions $P$.
Definition
The infimum, or meet, of partitions $P$ and $Q$
is the partition $P \wedge Q$ each of whose parts is
a non-empty intersection of a part of $P$ and a part of $Q$.
So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$;
and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

## Definition

The supremum, or join, of partitions $P$ and $Q$
is the partition $P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$ and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.
Draw a graph by putting an edge between two points if they are in the same part of $P$ or the same part of $Q$. Then the parts of $P \vee \underset{\text { Diagonal structures }}{Q}$ are the conneded components of cCGTA

## Link with semigroups

The infimum operation $\wedge$

- is associative;


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;
- has all elements as idempotents, because $P \wedge P=P$ for all partitions $P$.


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;
- has all elements as idempotents, because $P \wedge P=P$ for all partitions $P$.


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;
- has all elements as idempotents, because $P \wedge P=P$ for all partitions $P$.
A set of partitions which is closed under taking infima (so it must include $U$ but may not include $E$ ) is called a meet semilattice.


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;
- has all elements as idempotents, because $P \wedge P=P$ for all partitions $P$.
A set of partitions which is closed under taking infima (so it must include $U$ but may not include $E$ ) is called a meet semilattice.
The above conditions show that it is a special kind of semigroup.


## Link with semigroups

The infimum operation $\wedge$

- is associative;
- is commutative;
- has identity $U$, because $U \wedge P=P$ for all partitions $P$;
- has zero $E$, because $E \wedge P=E$ for all partitions $P$;
- has all elements as idempotents, because $P \wedge P=P$ for all partitions $P$.
A set of partitions which is closed under taking infima (so it must include $U$ but may not include $E$ ) is called a meet semilattice.
The above conditions show that it is a special kind of semigroup.
Semigroup theorists call a semigroup satisfying these conditions a semilattice.


## Link with semigroups, continued

Now let us look at the dual concept.

## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;
- has all elements as idempotents, because $P \vee P=P$ for all partitions $P$.


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;
- has all elements as idempotents, because $P \vee P=P$ for all partitions $P$.


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;
- has all elements as idempotents, because $P \vee P=P$ for all partitions $P$.
A set of partitions which is closed under taking suprema (so it must include $E$ but may not include $U$ )
is called a join semilattice.


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;
- has all elements as idempotents, because $P \vee P=P$ for all partitions $P$.
A set of partitions which is closed under taking suprema (so it must include $E$ but may not include $U$ )
is called a join semilattice.
The above conditions show that it is a special kind of semigroup.


## Link with semigroups, continued

Now let us look at the dual concept.
The supremum operation $\vee$

- is associative;
- is commutative;
- has identity $E$, because $E \vee P=P$ for all partitions $P$;
- has zero $U$, because $U \vee P=U$ for all partitions $P$;
- has all elements as idempotents, because $P \vee P=P$ for all partitions $P$.
A set of partitions which is closed under taking suprema
(so it must include $E$ but may not include $U$ )
is called a join semilattice.
The above conditions show that it is a special kind of semigroup.
Each such semigroup is isomorphic to one defined by a meet semilattice.


## Hasse diagrams

Given a collection $\mathcal{P}$ of partitions of a set $\Omega$, we can show them on a Hasse diagram.

- Draw a dot for each partition in $\mathcal{P}$.
- If $P \prec Q$ then put $Q$ higher than $P$ in the diagram.
- If $P \prec Q$ but there is no $S$ in $\mathcal{P}$ with $P \prec S \prec Q$ then draw a line from $P$ to $Q$.


## Hasse diagrams

Given a collection $\mathcal{P}$ of partitions of a set $\Omega$, we can show them on a Hasse diagram.

- Draw a dot for each partition in $\mathcal{P}$.
- If $P \prec Q$ then put $Q$ higher than $P$ in the diagram.
- If $P \prec Q$ but there is no $S$ in $\mathcal{P}$ with $P \prec S \prec Q$ then draw a line from $P$ to $Q$.

Here is the Hasse diagram for a Latin square.


## An alternative definition of Latin square

## Definition

Let $P$ and $Q$ be uniform partitions of a set $\Omega$. Then $P$ and $Q$ are compatible if

- whenever $\omega_{1}$ and $\omega_{2}$ are points in the same part of $P \vee Q$, there are points $\alpha$ and $\beta$ such that
- $\omega_{1}$ and $\alpha$ are in the same part of $P$,
- $\alpha$ and $\omega_{2}$ are in the same part of $Q$,
- $\omega_{1}$ and $\beta$ are in the same part of $Q$,
- $\beta$ and $\omega_{2}$ are in the same part of $P$.
- $P \wedge Q$ is uniform.


## An alternative definition of Latin square

## Definition

Let $P$ and $Q$ be uniform partitions of a set $\Omega$. Then $P$ and $Q$ are compatible if

- whenever $\omega_{1}$ and $\omega_{2}$ are points in the same part of $P \vee Q$, there are points $\alpha$ and $\beta$ such that
- $\omega_{1}$ and $\alpha$ are in the same part of $P$,
- $\alpha$ and $\omega_{2}$ are in the same part of $Q$,
- $\omega_{1}$ and $\beta$ are in the same part of $Q$,
- $\beta$ and $\omega_{2}$ are in the same part of $P$.
- $P \wedge Q$ is uniform.


## Definition

A Latin square is a set $\{R, C, L\}$ of pairwise compatible uniform partitions of a set $\Omega$ which satisfy $R \wedge C=R \wedge L=C \wedge L=E$ and $R \vee C=R \vee L=C \vee L=U$.

## Another nice family of partitions

## Definition

Suppose that $P_{1}, P_{2}$ and $P_{3}$ are partitions of a set $\Omega$, none of which is $U$. Then
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of $\Omega$ of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever $\Gamma_{i}$ is a part of $P_{i}$ for $i=1,2,3$.

## Another nice family of partitions

## Definition

Suppose that $P_{1}, P_{2}$ and $P_{3}$ are partitions of a set $\Omega$, none of which is $U$. Then
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of $\Omega$ of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever $\Gamma_{i}$ is a part of $P_{i}$ for $i=1,2,3$.
Taking infima gives a Cartesian lattice.


## Another nice family of partitions

## Definition

Suppose that $P_{1}, P_{2}$ and $P_{3}$ are partitions of a set $\Omega$, none of which is $U$. Then
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of $\Omega$ of dimension 3
if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever $\Gamma_{i}$ is a part of $P_{i}$ for $i=1,2,3$.
Taking infima gives a Cartesian lattice.


- Each partition is uniform.


## Another nice family of partitions

## Definition

Suppose that $P_{1}, P_{2}$ and $P_{3}$ are partitions of a set $\Omega$, none of which is $U$. Then
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of $\Omega$ of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever $\Gamma_{i}$ is a part of $P_{i}$ for $i=1,2,3$.
Taking infima gives a Cartesian lattice.


- Each partition is uniform.
- Each pair are compatible.


## Another nice family of partitions

## Definition

Suppose that $P_{1}, P_{2}$ and $P_{3}$ are partitions of a set $\Omega$, none of which is $U$. Then
$\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of $\Omega$ of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever $\Gamma_{i}$ is a part of $P_{i}$ for $i=1,2,3$.
Taking infima gives a Cartesian lattice.


- Each partition is uniform.
- Each pair are compatible.
- Statisticians call this a completely crossed orthogonal block structure.


## Coset partitions

Definition
Let $H$ be a subgroup of a group $G$. Then $P_{H}$ is the partition of $G$ into right cosets of $H$.

## Coset partitions

## Definition

Let $H$ be a subgroup of a group $G$. Then $P_{H}$ is the partition of $G$ into right cosets of $H$.

## Proposition

Let $H$ and $K$ be subgroups of a group $G$. The following hold.

1. $P_{H}$ is uniform.
2. $P_{H} \wedge P_{K}=P_{H \cap K}$.
3. $P_{H} \vee P_{K}=P_{\langle H, K\rangle}$.
4. $P_{H}$ and $P_{K}$ are compatible if and only if $H K=K H$.

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P
$$

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\begin{gathered}
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P . \\
P \preccurlyeq Q \Longleftrightarrow V_{Q} \leq V_{P} .
\end{gathered}
$$

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\begin{gathered}
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P . \\
P \preccurlyeq Q \Longleftrightarrow V_{Q} \leq V_{P}
\end{gathered}
$$

In particular, $V_{E}=V$ and $V_{U}$ is the 1-dimensional subspace of constant vectors.

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\begin{gathered}
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P . \\
P \preccurlyeq Q \Longleftrightarrow V_{Q} \leq V_{P}
\end{gathered}
$$

In particular, $V_{E}=V$ and $V_{U}$ is the 1-dimensional subspace of constant vectors.

$$
V_{P} \cap V_{Q}=V_{P \vee Q}
$$

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\begin{gathered}
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P \\
P \preccurlyeq Q \Longleftrightarrow V_{Q} \leq V_{P}
\end{gathered}
$$

In particular, $V_{E}=V$ and $V_{U}$ is the 1-dimensional subspace of constant vectors.

$$
V_{P} \cap V_{Q}=V_{P \vee Q}
$$

Consider the standard inner product on $V$. Because $V_{P} \cap V_{Q} \neq\{\mathbf{0}\}$, the subspaces $V_{P}$ and $V_{Q}$ cannot be orthogonal to each other.

## Orthogonality

Let $V$ be the real vector space $\mathbb{R}^{\Omega}$.
If $P$ is any partition of $\Omega$, let $V_{P}$ be the subspace of $V$ consisting of vectors which are constant on each part of $P$.

$$
\begin{gathered}
\operatorname{dim}\left(V_{P}\right)=\text { number of parts of } P \\
P \preccurlyeq Q \Longleftrightarrow V_{Q} \leq V_{P}
\end{gathered}
$$

In particular, $V_{E}=V$
and $V_{U}$ is the 1-dimensional subspace of constant vectors.

$$
V_{P} \cap V_{Q}=V_{P \vee Q}
$$

Consider the standard inner product on $V$. Because $V_{P} \cap V_{Q} \neq\{\mathbf{0}\}$, the subspaces $V_{P}$ and $V_{Q}$ cannot be orthogonal to each other.

## Theorem

If $P$ and $Q$ are uniform and compatible then
$V_{P} \cap V_{P \vee Q}^{\perp}$ is orthogonal to $V_{Q} \cap V_{P \vee Q}^{\perp}$.

## Orthogonal decomposition

Theorem
Suppose that $\mathcal{P}$ is a join semilattice of pairwise compatible uniform partitions of $\Omega$. For $P$ in $\mathcal{P}$, put

$$
W_{P}=V_{P} \cap\left(\sum_{P \prec Q} V_{Q}\right)^{\perp}
$$

Then the W-subspaces are pairwise orthogonal and

$$
V_{Q}=\bigoplus_{Q \preccurlyeq P} W_{P}
$$

## Orthogonal decomposition

Theorem
Suppose that $\mathcal{P}$ is a join semilattice of pairwise compatible uniform partitions of $\Omega$. For $P$ in $\mathcal{P}$, put

$$
W_{P}=V_{P} \cap\left(\sum_{P \prec Q} V_{Q}\right)^{\perp}
$$

Then the W-subspaces are pairwise orthogonal and

$$
V_{Q}=\bigoplus_{Q \preccurlyeq P} W_{P}
$$

The partial order $\preccurlyeq$ has a zeta-function $\zeta$ defined by

$$
\zeta(Q, P)= \begin{cases}1 & \text { if } Q \preccurlyeq P, \\ 0 & \text { otherwise }\end{cases}
$$

## Orthogonal decomposition

Theorem
Suppose that $\mathcal{P}$ is a join semilattice of pairwise compatible uniform partitions of $\Omega$. For $P$ in $\mathcal{P}$, put

$$
W_{P}=V_{P} \cap\left(\sum_{P \prec Q} V_{Q}\right)^{\perp}
$$

Then the $W$-subspaces are pairwise orthogonal and

$$
V_{Q}=\bigoplus_{Q \preccurlyeq P} W_{P}
$$

The partial order $\preccurlyeq$ has a zeta-function $\zeta$ defined by

$$
\zeta(Q, P)= \begin{cases}1 & \text { if } Q \preccurlyeq P, \\ 0 & \text { otherwise }\end{cases}
$$

So $\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)$.

## Möbius inversion

$$
\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)
$$

We can write the names of the partitions in order such that $Q$ comes before $P$ if $Q \prec P$.

## Möbius inversion

$$
\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)
$$

We can write the names of the partitions in order such that $Q$ comes before $P$ if $Q \prec P$.
Then the square matrix $\zeta$ is upper-triangular with all entries on the main diagonal equal to 1.

## Möbius inversion

$$
\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)
$$

We can write the names of the partitions in order such that $Q$ comes before $P$ if $Q \prec P$.
Then the square matrix $\zeta$ is upper-triangular with all entries on the main diagonal equal to 1 . Hence the matrix $\zeta$ has an inverse matrix $\mu$, which is also upper-triangular with all entries on the main diagonal equal to 1.

## Möbius inversion

$$
\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)
$$

We can write the names of the partitions in order such that $Q$ comes before $P$ if $Q \prec P$.
Then the square matrix $\zeta$ is upper-triangular with all entries on the main diagonal equal to 1 . Hence the matrix $\zeta$ has an inverse matrix $\mu$, which is also upper-triangular with all entries on the main diagonal equal to 1. This is called the Möbius function, which was extensively studied by Gian-Carlo Rota.

## Möbius inversion

$$
\operatorname{dim}\left(V_{Q}\right)=\sum_{P} \zeta(Q, P) \operatorname{dim}\left(W_{P}\right)
$$

We can write the names of the partitions in order such that $Q$ comes before $P$ if $Q \prec P$.
Then the square matrix $\zeta$ is upper-triangular with all entries on the main diagonal equal to 1 . Hence the matrix $\zeta$ has an inverse matrix $\mu$, which is also upper-triangular with all entries on the main diagonal equal to 1. This is called the Möbius function, which was extensively studied by Gian-Carlo Rota. Applying so-called Möbius inversion to the equation at the top of this slide gives

$$
\operatorname{dim}\left(W_{P}\right)=\sum_{Q} \mu(P, Q) \operatorname{dim}\left(V_{Q}\right)
$$

## Chapter 2

# Some statistical history 

## Statisticians at Rothamsted

Here are some of the statisticians who have worked at the agricultural research station at Rothamsted.

| Ronald Fisher | 1919-1933 | then UCL, then Cambridge |
| :---: | :---: | :---: |
| Frank Yates | 1931-1968 |  |
| David Finney | 1939-1945 | then Oxford, Aberdeen, then Edinburgh |
| Oscar Kempthorne | 1941-1946 | then Ames, Iowa |
| Desmond Patterson | 1947-1967 | then Edinburgh |
| John Nelder | 1968-1984 | previously National |
|  |  | Vegetable Research Station |
| Rosemary Bailey | 1981-1990 |  |
| Robin Thompson | 1997-2012 (?) | previously Edinburgh |

## Photos: Fisher and Yates



Ronald Fisher


Frank Yates

## Photos: Kempthorne and Patterson



# Oscar Kempthorne 

Desmond Patterson

## Photos: Finney and Nelder



David Finney


John Nelder

## Nelder's papers

In 1976-1978 I was employed as a post-doctoral research fellow in the Statistics Department at Edinburgh University. The aim was to apply ideas from combinatorics and group theory to design of experiments.

## Nelder's papers

In 1976-1978 I was employed as a post-doctoral research fellow in the Statistics Department at Edinburgh University. The aim was to apply ideas from combinatorics and group theory to design of experiments.
At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

## Nelder's papers

In 1976-1978 I was employed as a post-doctoral research fellow in the Statistics Department at Edinburgh University. The aim was to apply ideas from combinatorics and group theory to design of experiments.
At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.

After three months, I said "OK, I understand them now."

## Nelder's papers

In 1976-1978 I was employed as a post-doctoral research fellow in the Statistics Department at Edinburgh University. The aim was to apply ideas from combinatorics and group theory to design of experiments.
At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.
After three months, I said "OK, I understand them now."
Desmond responded "Hmph! That's good. No one else does."

## Nelder's papers

In 1976-1978 I was employed as a post-doctoral research fellow in the Statistics Department at Edinburgh University. The aim was to apply ideas from combinatorics and group theory to design of experiments.
At the start, Desmond Patterson gave me copies of John Nelder's two 1965 papers on orthogonal block structure, and told me to read them.
After three months, I said "OK, I understand them now."
Desmond responded "Hmph! That's good. No one else does."
I did not believe him then, but, looking back, I can see that his approach did not incorporate Nelder's ideas until much later.

## Kempthorne's papers

Then my colleague Robin Thompson gave me a 1961 technical report (long, but in typescript) by Oscar Kempthorne and his colleagues in Ames. This developed essentially the same ideas as Nelder's: lattices of partitions using some of the partitions in a Cartesian lattice (not necessarily with all coordinates having the same number of values, for example, the rows and columns of a rectangle).

## Kempthorne's papers

Then my colleague Robin Thompson gave me a 1961 technical report (long, but in typescript) by Oscar Kempthorne and his colleagues in Ames. This developed essentially the same ideas as Nelder's: lattices of partitions using some of the partitions in a Cartesian lattice (not necessarily with all coordinates having the same number of values, for example, the rows and columns of a rectangle).
Later I learnt that Kempthorne was furious that Nelder had "stolen" his ideas. I believe that they simply developed them independently, building on the work of Fisher and Yates. In those days, it took much longer for ideas to circulate widely.

## Putting the bits together

One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3.

## Putting the bits together

One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3. At the end of the day, I hit a problem.
For dimension 4, Nelder's approach gave 15 possibilities, but Kempthorne's gave 16. I gave up and went home.

## Putting the bits together

One morning, I came into work after drinking too much in the pub the previous evening. I realised that my brain was not capable of serious work, so I gave it the apparently simple task of matching Nelder's block structures with those of Kempthorne. Slowly, I worked through dimensions 1, 2 and 3. At the end of the day, I hit a problem.
For dimension 4, Nelder's approach gave 15 possibilities, but Kempthorne's gave 16. I gave up and went home.
The next day, with a clear head, I realised that Kempthorne's approach always gives more possibilities than Nelder's in dimensions at least 4.

## Meeting Kempthorne

I worked on these ideas for some years, partly in collaboration with Terry Speed. We used the Möbius function in some formulae.

## Meeting Kempthorne

I worked on these ideas for some years, partly in collaboration with Terry Speed. We used the Möbius function in some formulae.
In June 1988 I attended a two-week research workshop at the Institute for Mathematics and its Applications in Minneapolis, USA. At the weekend, another participant, Jonathan Smith, took me to Ames, so that I could have some meetings with Kempthorne.

## Meeting Kempthorne

I worked on these ideas for some years, partly in collaboration with Terry Speed. We used the Möbius function in some formulae.
In June 1988 I attended a two-week research workshop at the Institute for Mathematics and its Applications in Minneapolis, USA. At the weekend, another participant, Jonathan Smith, took me to Ames, so that I could have some meetings with Kempthorne. Kempthorne was very friendly, and said that he much appreciated my work, but
"This Möbius function really does the job. I wish that we had known about it."

## Chapter 3

## Diagonal semilattices

## Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I were in Shenzen, China, for a conference dedicated to Cheryl's 70-th birthday. After the conference, CEP and CS showed us something that they were working on that they thought would interest us.

## Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I were in Shenzen, China, for a conference dedicated to Cheryl's 70-th birthday. After the conference, CEP and CS showed us something that they were working on that they thought would interest us.

CEP and CS: This is about diagonal groups, permutation groups and Cartesian decompositions.

## Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I were in Shenzen, China, for a conference dedicated to Cheryl's 70-th birthday. After the conference, CEP and CS showed us something that they were working on that they thought would interest us.

CEP and CS: This is about diagonal groups, permutation groups and Cartesian decompositions.
PJC: I think it is about Hamming graphs.

## Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I were in Shenzen, China, for a conference dedicated to Cheryl's 70-th birthday. After the conference, CEP and CS showed us something that they were working on that they thought would interest us.

CEP and CS: This is about diagonal groups, permutation groups and Cartesian decompositions.
PJC: I think it is about Hamming graphs.
RAB: I think it is about orthogonal block structures.

## Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I were in Shenzen, China, for a conference dedicated to Cheryl's 70-th birthday. After the conference, CEP and CS showed us something that they were working on that they thought would interest us.

CEP and CS: This is about diagonal groups, permutation groups and Cartesian decompositions.
PJC: I think it is about Hamming graphs.
RAB: I think it is about orthogonal block structures.
We started to collaborate, and two years later
(during the first Covid-19 lockdown) proved a lovely theorem.

## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.

## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?


## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?
$n$ xy-planes


## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?
$n$ xy-planes


Each letter occurs exactly once in each plane.

## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ? $n$ xy-planes


Each letter occurs exactly once in each plane.


## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ? $n x y$-planes


Each letter occurs exactly once in each plane.


Two distinct parallel lines have either exactly the same letters or no letters in common.

## Generalizing Latin squares to higher dimensions

The 3 partitions $R, C$ and $L$ in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ? $n x y$-planes


Each letter occurs exactly once in each plane.


Two distinct parallel lines have either exactly the same letters or no letters in common.

Conditions (1) and (2) give one definition (among very many) of a Latin cube.

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted $i$ ), 3 different greenhouse temperatures (denoted $j$ ), 3 different fertilizers ( $k$ ) and 3 different spacings between plants $(\ell)$.

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted $i$ ), 3 different greenhouse temperatures (denoted $j$ ), 3 different fertilizers ( $k$ ) and 3 different spacings between plants $(\ell)$.
There are 81 combinations but only 27 greenhouses.

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted $i$ ), 3 different greenhouse temperatures (denoted $j$ ), 3 different fertilizers ( $k$ ) and 3 different spacings between plants ( $\ell$ ).
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \quad \bmod (3)\right\}<C_{3}^{4}
$$

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted $i$ ), 3 different greenhouse temperatures (denoted $j$ ), 3 different fertilizers ( $k$ ) and 3 different spacings between plants $(\ell)$.
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
\begin{gathered}
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \quad \bmod (3)\right\}<C_{3}^{4} \\
\text { Put } x=a b^{-1}, y=b c^{-1}, z=c d^{-1} \text { and } t=x y z=a d^{-1}
\end{gathered}
$$

## Some more statistics

In 1945, David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary.
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted $i$ ), 3 different greenhouse temperatures (denoted $j$ ), 3 different fertilizers $(k)$ and 3 different spacings between plants $(\ell)$.
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \quad \bmod (3)\right\}<C_{3}^{4}
$$

Put $x=a b^{-1}, y=b c^{-1}, z=c d^{-1}$ and $t=x y z=a d^{-1}$.
Then $H=\langle x\rangle \times\langle y\rangle \times\langle z\rangle$ and the coset partitions of $H$ defined by any 3 of $\langle x\rangle,\langle y\rangle,\langle z\rangle$ and $\langle t\rangle$ are the minimal non-trivial partitions in a Cartesian lattice of dimension 3.

## Theorem about diagonal semilattices

## Theorem about diagonal semilattices

Theorem
Let $\mathcal{Q}$ be a set of $m+1$ partitions of the same set $\Omega$, where $m \geq 2$. Suppose that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.

## Theorem about diagonal semilattices

Theorem
Let $\mathcal{Q}$ be a set of $m+1$ partitions of the same set $\Omega$, where $m \geq 2$. Suppose that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
(a) If $m=2$ then there is a Latin square on $\Omega$, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.

## Theorem about diagonal semilattices

Theorem
Let $\mathcal{Q}$ be a set of $m+1$ partitions of the same set $\Omega$, where $m \geq 2$.
Suppose that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
(a) If $m=2$ then there is a Latin square on $\Omega$, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.
(b) If $m>2$ then there is a group $G$, unique up to group isomorphism, such that $\Omega$ may be identified with $G^{m}$ and the partitions in $\mathcal{Q}$ are the right-coset partitions of the subgroups $G_{1}, \ldots, G_{m}, \delta(G)$, where $G_{i}$ has $j$-th entry 1 for all $j \neq i$, and $\delta(G)$ is the diagonal subgroup $\{(g, g, \ldots, g): g \in G\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.

## Theorem about diagonal semilattices

## Theorem

Let $\mathcal{Q}$ be a set of $m+1$ partitions of the same set $\Omega$, where $m \geq 2$.
Suppose that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
(a) If $m=2$ then there is a Latin square on $\Omega$, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.
(b) If $m>2$ then there is a group $G$, unique up to group isomorphism, such that $\Omega$ may be identified with $G^{m}$ and the partitions in $\mathcal{Q}$ are the right-coset partitions of the subgroups $G_{1}, \ldots, G_{m}, \delta(G)$, where $G_{i}$ has $j$-th entry 1 for all $j \neq i$, and $\delta(G)$ is the diagonal subgroup $\{(g, g, \ldots, g): g \in G\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.
For $m>2$, the combinatorial assumptions in the statement of the theorem force the existence of a group.

## Hasse diagram for coset partitions in dimension 3



## Hasse diagram for coset partitions in dimension 3

Each partition is uniform.


## Hasse diagram for coset partitions in dimension 3

Each partition is uniform.
Each pair are compatible.


## Hasse diagram for coset partitions in dimension 3

Each partition is uniform.
All suprema are included, Each pair are compatible.


## Hasse diagram for coset partitions in dimension 3

Each partition is uniform. Each pair are compatible.

All suprema are included,


## Comments

1. If the group $G$ is not Abelian, then we cannot include all infima without destroying compatibility.

## Comments

1. If the group $G$ is not Abelian, then we cannot include all infima without destroying compatibility.
2. In 1984, Danish statistician Tue Tjur pointed out that, for statistical purposes, closure under suprema is more important than closure under infima, and that such closure does not destroy compatibility.

## Chapter 4

Diagonal graphs

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate.

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate. Here is another way to think about this. The coordinates define the minimal partitions in a Cartesian lattice. Two vertices are joined if they are in the same part of any one of the minimal partitions.

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate. Here is another way to think about this. The coordinates define the minimal partitions in a Cartesian lattice. Two vertices are joined if they are in the same part of any one of the minimal partitions.
When $n=2$, the Hamming graph can be thought of as the $m$-dimensional cube.

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate.
Here is another way to think about this. The coordinates define the minimal partitions in a Cartesian lattice. Two vertices are joined if they are in the same part of any one of the minimal partitions.
When $n=2$, the Hamming graph can be thought of as the $m$-dimensional cube. Now add an extra edge at each vertex, joining it to the vertex which differs from it in all coordinates. This graph is called the folded cube.

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate.
Here is another way to think about this. The coordinates define the minimal partitions in a Cartesian lattice. Two vertices are joined if they are in the same part of any one of the minimal partitions.
When $n=2$, the Hamming graph can be thought of as the $m$-dimensional cube. Now add an extra edge at each vertex, joining it to the vertex which differs from it in all coordinates. This graph is called the folded cube.
When $m=4$ it is also called the Clebsch graph.

## Hamming graphs

The Hamming graph $H(m, n)$ has vertex set $A^{m}$, where $A$ is a set of size $n$ with $n>1$; two vertices are joined if they differ in exactly one coordinate.
Here is another way to think about this. The coordinates define the minimal partitions in a Cartesian lattice. Two vertices are joined if they are in the same part of any one of the minimal partitions.
When $n=2$, the Hamming graph can be thought of as the $m$-dimensional cube. Now add an extra edge at each vertex, joining it to the vertex which differs from it in all coordinates. This graph is called the folded cube.
When $m=4$ it is also called the Clebsch graph
In recent work, Peter Cameron and I have generalized the folded cube to larger values of $n$, using a diagonal semi-lattice.

## Defining a diagonal graph

Given a group $G$ of order $n$, the diagonal graph $\Gamma_{D}(G, m)$ of dimension $m$ has vertex set $G^{m}$.

## Defining a diagonal graph

Given a group $G$ of order $n$, the diagonal graph $\Gamma_{D}(G, m)$ of dimension $m$ has vertex set $G^{m}$.
Let $Q_{1}, \ldots, Q_{m}$ be the the partitions defined by the appropriate coordinates, and let $Q_{0}$ be the coset partition of the diagonal subgroup $\delta(G)$. Two distinct vertices are joined if they are in the same part of any one of these $m+1$ partitions.

## Defining a diagonal graph

Given a group $G$ of order $n$, the diagonal graph $\Gamma_{D}(G, m)$ of dimension $m$ has vertex set $G^{m}$.
Let $Q_{1}, \ldots, Q_{m}$ be the the partitions defined by the appropriate coordinates, and let $Q_{0}$ be the coset partition of the diagonal subgroup $\delta(G)$. Two distinct vertices are joined if they are in the same part of any one of these $m+1$ partitions.
If $n=2$, this is the folded cube.

## Defining a diagonal graph

Given a group $G$ of order $n$, the diagonal graph $\Gamma_{D}(G, m)$ of dimension $m$ has vertex set $G^{m}$.
Let $Q_{1}, \ldots, Q_{m}$ be the the partitions defined by the appropriate coordinates, and let $Q_{0}$ be the coset partition of the diagonal subgroup $\delta(G)$. Two distinct vertices are joined if they are in the same part of any one of these $m+1$ partitions.
If $n=2$, this is the folded cube.
If $m=2$, this is the Latin-square graph defined by the Cayley table of $G$. This is a well-known strongly regular graph.

## Some basic properties of the diagonal graph $\Gamma_{D}(G, m)$

- There are $n^{m}$ vertices.


## Some basic properties of the diagonal graph $\Gamma_{D}(G, m)$

- There are $n^{m}$ vertices.
- The valency is $(m+1)(n-1)$.


## Some basic properties of the diagonal graph $\Gamma_{D}(G, m)$

- There are $n^{m}$ vertices.
- The valency is $(m+1)(n-1)$.
- Except for $n=m=2$, the clique number is $n$.


## Some basic properties of the diagonal graph $\Gamma_{D}(G, m)$

- There are $n^{m}$ vertices.
- The valency is $(m+1)(n-1)$.
- Except for $n=m=2$, the clique number is $n$.
- $\Gamma_{D}\left(G_{1}, m_{1}\right) \cong \Gamma_{D}\left(G_{2}, m_{2}\right) \Longleftrightarrow m_{1}=m_{2}$ and $G_{1} \cong G_{2}$.


## Some basic properties of the diagonal graph $\Gamma_{D}(G, m)$

- There are $n^{m}$ vertices.
- The valency is $(m+1)(n-1)$.
- Except for $n=m=2$, the clique number is $n$.
- $\Gamma_{D}\left(G_{1}, m_{1}\right) \cong \Gamma_{D}\left(G_{2}, m_{2}\right) \Longleftrightarrow m_{1}=m_{2}$ and $G_{1} \cong G_{2}$.
- The diameter is equal to

$$
m+1-\left\lceil\frac{m+1}{n}\right\rceil
$$

which is less than or equal to $m$, with equality if and only if $n \geq m+1$.

## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.

## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.
In $G^{3}$, put $a=(x, 1,1), b=(1, x, 1)$ and $c=(1,1, x)$.

## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.
In $G^{3}$, put $a=(x, 1,1), b=(1, x, 1)$ and $c=(1,1, x)$.
The diagonal semi-lattice has

| minimal partitions | $Q_{0}$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| cosets of | $\langle a b c\rangle$ | $\langle a\rangle$ | $\langle b\rangle$ | $\langle c\rangle$ |

## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.
In $G^{3}$, put $a=(x, 1,1), b=(1, x, 1)$ and $c=(1,1, x)$.
The diagonal semi-lattice has


Here are the vertices joined to vertex 1.


## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.
In $G^{3}$, put $a=(x, 1,1), b=(1, x, 1)$ and $c=(1,1, x)$.
The diagonal semi-lattice has


Here are the vertices joined to vertex 1.


Vertices 1 and $a b$ are at distance 2, and have 4 common neighbours. Vertices 1 and $a^{2} b$ are at distance 2 , and have 2 common neighbours.

## An example with $m=3$ and $n=3$

Let $G=\langle x\rangle$, where $x^{3}=1$.
In $G^{3}$, put $a=(x, 1,1), b=(1, x, 1)$ and $c=(1,1, x)$.
The diagonal semi-lattice has


Here are the vertices joined to vertex 1.


Vertices 1 and $a b$ are at distance 2 , and have 4 common neighbours. Vertices 1 and $a^{2} b$ are at distance 2 , and have 2 common neighbours. So the graph is not distance-regular.

## Eigenvalues of the adjacency matrix

For $i=0,1, \ldots, m$, let $A_{i}$ be the $n \times n$ matrix whose rows and columns are indexed by elements of $G$ with
$A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } Q_{i} \text { but } \alpha \neq \beta, \\ 0 & \text { otherwise. }\end{cases}$

## Eigenvalues of the adjacency matrix

For $i=0,1, \ldots, m$, let $A_{i}$ be the $n \times n$ matrix whose rows and columns are indexed by elements of $G$ with
$A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } Q_{i} \text { but } \alpha \neq \beta, \\ 0 & \text { otherwise. }\end{cases}$
Then the adjacency matrix $A$ of $\Gamma_{D}(G, m)$ is given by

$$
A=A_{0}+A_{1}+\cdots+A_{m}
$$

## Eigenvalues of the adjacency matrix

For $i=0,1, \ldots, m$, let $A_{i}$ be the $n \times n$ matrix whose rows and columns are indexed by elements of $G$ with
$A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } Q_{i} \text { but } \alpha \neq \beta, \\ 0 & \text { otherwise. }\end{cases}$
Then the adjacency matrix $A$ of $\Gamma_{D}(G, m)$ is given by

$$
A=A_{0}+A_{1}+\cdots+A_{m}
$$

$A_{i}$ is the adjacency matrix of a graph which is $n^{m-1}$ disjoint copies of the complete graph $K_{n}$, one on each part of $Q_{i}$.

## Eigenvalues of the adjacency matrix

For $i=0,1, \ldots, m$, let $A_{i}$ be the $n \times n$ matrix whose rows and columns are indexed by elements of $G$ with
$A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } Q_{i} \text { but } \alpha \neq \beta, \\ 0 & \text { otherwise. }\end{cases}$
Then the adjacency matrix $A$ of $\Gamma_{D}(G, m)$ is given by

$$
A=A_{0}+A_{1}+\cdots+A_{m}
$$

$A_{i}$ is the adjacency matrix of a graph which is $n^{m-1}$ disjoint copies of the complete graph $K_{n}$, one on each part of $Q_{i}$.
So the eigenvalues of $A_{i}$ are $n-1$ and -1 , with corresponding eigenspaces $V_{Q_{i}}$ and $V_{Q_{i}}^{\perp}$ and corresponding multiplicities $n^{m-1}$ and $n^{m-1}(n-1)$.

## Eigenvalues of the adjacency matrix

For $i=0,1, \ldots, m$, let $A_{i}$ be the $n \times n$ matrix whose rows and columns are indexed by elements of $G$ with
$A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } Q_{i} \text { but } \alpha \neq \beta, \\ 0 & \text { otherwise. }\end{cases}$
Then the adjacency matrix $A$ of $\Gamma_{D}(G, m)$ is given by

$$
A=A_{0}+A_{1}+\cdots+A_{m}
$$

$A_{i}$ is the adjacency matrix of a graph which is $n^{m-1}$ disjoint copies of the complete graph $K_{n}$, one on each part of $Q_{i}$.
So the eigenvalues of $A_{i}$ are $n-1$ and -1 , with corresponding eigenspaces $V_{Q_{i}}$ and $V_{Q_{i}}^{\perp}$ and corresponding multiplicities $n^{m-1}$ and $n^{m-1}(n-1)$. Hence each $W$-subspace is contained in an eigenspace of $A$.

## Eigenvalues of the adjacency matrix, continued

If $Q$ is a partition in the diagonal semi-lattice, put $\rho(Q)=k$ if $Q$ is the supremum of exactly $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Call $\rho(Q)$ the rank of $Q$.

## Eigenvalues of the adjacency matrix, continued

If $Q$ is a partition in the diagonal semi-lattice, put $\rho(Q)=k$ if $Q$ is the supremum of exactly $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Call $\rho(Q)$ the rank of $Q$.
If $\rho(Q)=k$ and $\mathbf{v} \in W_{Q}$ then $\mathbf{v}$ is constant on precisely $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Hence the eigenvalue of $A$ on $\mathbf{v}$ is

$$
k(n-1)+(m+1-k)(-1)=-(m+1)+k n
$$

## Eigenvalues of the adjacency matrix, continued

If $Q$ is a partition in the diagonal semi-lattice, put $\rho(Q)=k$ if $Q$ is the supremum of exactly $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Call $\rho(Q)$ the rank of $Q$.
If $\rho(Q)=k$ and $\mathbf{v} \in W_{Q}$ then $\mathbf{v}$ is constant on precisely $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Hence the eigenvalue of $A$ on $\mathbf{v}$ is

$$
k(n-1)+(m+1-k)(-1)=-(m+1)+k n
$$

We know that, for partition $P$,

$$
\operatorname{dim}\left(V_{P}\right)=n^{m-\rho(P)}=\sum_{P \preccurlyeq Q} \operatorname{dim}\left(W_{Q}\right)=\sum_{Q} \zeta(P, Q) \operatorname{dim}\left(W_{Q}\right)
$$

## Eigenvalues of the adjacency matrix, continued

If $Q$ is a partition in the diagonal semi-lattice, put $\rho(Q)=k$ if $Q$ is the supremum of exactly $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Call $\rho(Q)$ the rank of $Q$.
If $\rho(Q)=k$ and $\mathbf{v} \in W_{Q}$ then $\mathbf{v}$ is constant on precisely $k$ of the minimal partitions $Q_{0}, Q_{1}, \ldots, Q_{m}$. Hence the eigenvalue of $A$ on $\mathbf{v}$ is

$$
k(n-1)+(m+1-k)(-1)=-(m+1)+k n
$$

We know that, for partition $P$,

$$
\operatorname{dim}\left(V_{P}\right)=n^{m-\rho(P)}=\sum_{P \preccurlyeq Q} \operatorname{dim}\left(W_{Q}\right)=\sum_{Q} \zeta(P, Q) \operatorname{dim}\left(W_{Q}\right)
$$

so Möbius inversion gives

$$
\operatorname{dim}\left(W_{Q}\right)=\sum_{P} \mu(Q, P) n^{m-\rho(P)}
$$

## That Möbius inversion

We managed to prove the following for the diagonal semi-lattice.
Theorem

## That Möbius inversion

We managed to prove the following for the diagonal semi-lattice.
Theorem

Using this gives

$$
\operatorname{dim}\left(W_{Q}\right)=n^{-1}(n-1)\left[(n-1)^{m-\rho(Q)}-(-1)^{m-\rho(Q)}\right]
$$

if $Q \neq U$, while $\operatorname{dim}\left(W_{U}\right)=1$.

## That Möbius inversion

We managed to prove the following for the diagonal semi-lattice.
Theorem

Using this gives

$$
\operatorname{dim}\left(W_{Q}\right)=n^{-1}(n-1)\left[(n-1)^{m-\rho(Q)}-(-1)^{m-\rho(Q)}\right]
$$

if $Q \neq U$, while $\operatorname{dim}\left(W_{U}\right)=1$.
There are ${ }^{m+1} \mathrm{C}_{k}$ partitions with rank $k$, if $0 \leq k \leq m-1$, so the eigenvalue $-(m+1)+k n$ has multiplicity

$$
{ }^{m+1} \mathrm{C}_{k} n^{-1}(n-1)\left[(n-1)^{m-k}-(-1)^{m-k}\right] .
$$

## That Möbius inversion

We managed to prove the following for the diagonal semi-lattice.
Theorem

Using this gives

$$
\operatorname{dim}\left(W_{Q}\right)=n^{-1}(n-1)\left[(n-1)^{m-\rho(Q)}-(-1)^{m-\rho(Q)}\right]
$$

if $Q \neq U$, while $\operatorname{dim}\left(W_{U}\right)=1$.
There are ${ }^{m+1} \mathrm{C}_{k}$ partitions with rank $k$, if $0 \leq k \leq m-1$, so the eigenvalue $-(m+1)+k n$ has multiplicity

$$
{ }^{m+1} \mathrm{C}_{k} n^{-1}(n-1)\left[(n-1)^{m-k}-(-1)^{m-k}\right] .
$$

This just leaves the subspace $W_{U}$ of constant vectors, which has eigenvalue $(m+1)(n-1)$ with multiplicity 1 .

## Chapter 5

$\ldots$ and beyond

## What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I started to generalize the previous work to a collection of $m+k$ partitions, with $m \geq 2$ and $k \geq 1$.

## What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I started to generalize the previous work to a collection of $m+k$ partitions, with $m \geq 2$ and $k \geq 1$. Because we have done the case $k=1$, our assumption now is that $\mathcal{Q}$ is a set of $m+k$ partitions of the same set $\Omega$, where $m \geq 2$ and $k \geq 2$, and that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.

## What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I started to generalize the previous work to a collection of $m+k$ partitions, with $m \geq 2$ and $k \geq 1$. Because we have done the case $k=1$, our assumption now is that $\mathcal{Q}$ is a set of $m+k$ partitions of the same set $\Omega$, where $m \geq 2$ and $k \geq 2$, and that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
When $m=2$, this is precisely a collection of $k$ mutually orthogonal Latin squares (MOLS).

## What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I started to generalize the previous work to a collection of $m+k$ partitions, with $m \geq 2$ and $k \geq 1$. Because we have done the case $k=1$, our assumption now is that $\mathcal{Q}$ is a set of $m+k$ partitions of the same set $\Omega$, where $m \geq 2$ and $k \geq 2$, and that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
When $m=2$, this is precisely a collection of $k$ mutually orthogonal Latin squares (MOLS).
Any three of the partitions define a Latin square, so we have ${ }^{k+2} \mathrm{C}_{3}$ such squares.

## What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I started to generalize the previous work to a collection of $m+k$ partitions, with $m \geq 2$ and $k \geq 1$. Because we have done the case $k=1$, our assumption now is that $\mathcal{Q}$ is a set of $m+k$ partitions of the same set $\Omega$, where $m \geq 2$ and $k \geq 2$, and that every subset of $m$ of the partitions in $\mathcal{Q}$ form the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
When $m=2$, this is precisely a collection of $k$ mutually orthogonal Latin squares (MOLS).
Any three of the partitions define a Latin square, so we have ${ }^{k+2} \mathrm{C}_{3}$ such squares.
We found an interesting example with $k=2$ and $|\Omega|=8^{2}$ where the four Latin squares are all Cayley tables of groups, but those groups come from three different isomorphism classes.

## Mutually orthogonal diagonal semilattices

When $m \geq 3$ it is tempting to use a term such as "Latin cube" or "Latin hypercube", but these have so many different meanings in the literature that we decided on the following definition.

## Mutually orthogonal diagonal semilattices

When $m \geq 3$ it is tempting to use a term such as "Latin cube" or "Latin hypercube", but these have so many different meanings in the literature that we decided on the following definition.
Definition
A set of $k$ mutually orthogonal diagonal semilattices (MODS) of order $n$ is a collection $Q_{1}, \ldots, Q_{m+k}$ of partitions of a set $\Omega$ of size $n^{m}$ with the property that any $m$ of these partitions are the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.

## Mutually orthogonal diagonal semilattices

When $m \geq 3$ it is tempting to use a term such as "Latin cube" or "Latin hypercube", but these have so many different meanings in the literature that we decided on the following definition.
Definition
A set of $k$ mutually orthogonal diagonal semilattices (MODS) of order $n$ is a collection $Q_{1}, \ldots, Q_{m+k}$ of partitions of a set $\Omega$ of size $n^{m}$ with the property that any $m$ of these partitions are the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
The previous result shows that any subset $\mathcal{S}$ of $m+1$ of these partitions defines a unique group $G_{\mathcal{S}}$ such that the partitions are the right-coset partitions of specified subgroups of $G_{\mathcal{S}}^{m}$.

## Mutually orthogonal diagonal semilattices

When $m \geq 3$ it is tempting to use a term such as "Latin cube" or "Latin hypercube", but these have so many different meanings in the literature that we decided on the following definition.

## Definition

A set of $k$ mutually orthogonal diagonal semilattices (MODS) of order $n$ is a collection $Q_{1}, \ldots, Q_{m+k}$ of partitions of a set $\Omega$ of size $n^{m}$ with the property that any $m$ of these partitions are the minimal non-trivial partitions in a Cartesian lattice of dimension $m$.
The previous result shows that any subset $\mathcal{S}$ of $m+1$ of these partitions defines a unique group $G_{\mathcal{S}}$ such that the partitions are the right-coset partitions of specified subgroups of $G_{\mathcal{S}}^{m}$.
It seems obvious that the isomorphism type of $G_{\mathcal{S}}$ should not depend on $\mathcal{S}$, but we have not been able to prove this yet.

## Regular mutually orthogonal diagonal semilattices

Let us call a set of MODS regular if the isomorphism type of $G_{\mathcal{S}}$ does not depend on $\mathcal{S}$.
Theorem
If $m \geq 3$ and $k \geq 2$ then the unique (up to isomorphism) group $G$ defined by a regular set of MODS is Abelian. Furthermore, G admits three fixed-point-free automorphisms whose product is the identity.

## Orthogonal arrays

If we reverse the partial order of refinement of partitions, we get a dual concept.

## Orthogonal arrays

If we reverse the partial order of refinement of partitions, we get a dual concept. Now the property is: any $m$ of these partitions are the maximal non-trivial partitions in a Cartesian lattice of dimension $m$.

## Orthogonal arrays

If we reverse the partial order of refinement of partitions, we get a dual concept. Now the property is: any $m$ of these partitions are the maximal non-trivial partitions in a Cartesian lattice of dimension $m$.
This is precisely the definition of an orthogonal array of strength $m$ and index 1 , a concept which has been studied by many people.

## Orthogonal arrays

If we reverse the partial order of refinement of partitions, we get a dual concept. Now the property is: any $m$ of these partitions are the maximal non-trivial partitions in a Cartesian lattice of dimension $m$.
This is precisely the definition of an orthogonal array of strength $m$ and index 1 , a concept which has been studied by many people.
One way of construcing orthogonal arrays uses elementary Abelian groups, building on the methods used in fractional factorial designs.

## Orthogonal arrays

If we reverse the partial order of refinement of partitions, we get a dual concept. Now the property is: any $m$ of these partitions are the maximal non-trivial partitions in a Cartesian lattice of dimension $m$.
This is precisely the definition of an orthogonal array of strength $m$ and index 1 , a concept which has been studied by many people.
One way of construcing orthogonal arrays uses elementary Abelian groups, building on the methods used in fractional factorial designs. Taking the dual of such a group (in the algebraic sense) gives the dual concept in the partition sense, which is what we want.

## Some subgroups of an elementary Abelian group

If $p$ is prime and $p \geq 5$ we can make a MODS with $n=p^{3}$, $m=3$ and $k=2$ by using some subgroups of an elementary Abelian group of order $p^{3}$.


## Another MODS

If $p$ is prime and $p \geq 5$ we can make a MODS with $n=p^{4}$, $m=4$ and $k=2$ by using some subgroups of an elementary Abelian group of order $p^{4}$.
If $G=\langle a, b, c, d\rangle$ then the six subgroups

$$
\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a b c d\rangle,\left\langle a b^{2} c^{3} d^{4}\right\rangle
$$

give the minimal partitions, any four of which generate a Cartesian lattice by taking suprema.

## Another MODS

If $p$ is prime and $p \geq 5$ we can make a MODS with $n=p^{4}$, $m=4$ and $k=2$ by using some subgroups of an elementary Abelian group of order $p^{4}$.
If $G=\langle a, b, c, d\rangle$ then the six subgroups

$$
\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle a b c d\rangle,\left\langle a b^{2} c^{3} d^{4}\right\rangle
$$

give the minimal partitions, any four of which generate a Cartesian lattice by taking suprema.

Unfortunately, my slide is too narrow to contain the Hasse diagram.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.
The vertices are the elements of the underlying set, and two distinct vertices are joined by an edge if they are in the same part of any of the minimal non-trivial partitions.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.
The vertices are the elements of the underlying set, and two distinct vertices are joined by an edge if they are in the same part of any of the minimal non-trivial partitions.
Eigenvalues, and their multiplicities, can be calculated in a similar way as before.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.
The vertices are the elements of the underlying set, and two distinct vertices are joined by an edge if they are in the same part of any of the minimal non-trivial partitions.
Eigenvalues, and their multiplicities, can be calculated in a similar way as before.
We can use these results to obtain an upper bound for $k$.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.
The vertices are the elements of the underlying set, and two distinct vertices are joined by an edge if they are in the same part of any of the minimal non-trivial partitions.
Eigenvalues, and their multiplicities, can be calculated in a similar way as before.
We can use these results to obtain an upper bound for $k$.
Theorem
Let $m \geq 2$ and $n \geq 2$. If there is a set of MODS of dimension $m$ with $m+k$ minimal non-trivial partitions on a set $\Omega$ of size $n^{m}$, then $k \leq n-1$.

## MODS to graphs

We can construct a graph from a set of MODS in just the same way that we do from a diagonal semi-lattice.
The vertices are the elements of the underlying set, and two distinct vertices are joined by an edge if they are in the same part of any of the minimal non-trivial partitions.
Eigenvalues, and their multiplicities, can be calculated in a similar way as before.
We can use these results to obtain an upper bound for $k$.
Theorem
Let $m \geq 2$ and $n \geq 2$. If there is a set of MODS of dimension $m$ with $m+k$ minimal non-trivial partitions on a set $\Omega$ of size $n^{m}$, then $k \leq n-1$.
When $m=2$, this theorem specializes to the well-known upper bound for the number of mutually orthogonal Latin squares of order $n$.

## References: Partitions in Statistics

- J. A. Nelder: The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proceedings of the Royal Society of London, Series A 283 (1965), 147-162.
- J. A. Nelder: The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proceedings of the Royal Society of London, Series A 283 (1965), 163-178.
- O. Kempthorne, G. Zyskind, S. Addelman, T. N. Throckmorton and R. F. White: Analysis of Variance Procedures, Aeronautical Research Laboratory Technical Report 149, Wright-Patterson Air Force Base, Ohio, 1961.
- R. A. Bailey: Orthogonal partitions in designed experiments. Designs, Codes and Cryptography 8 (1996), 45-77.
- T. Tjur: Analysis of variance models in orthogonal designs. International Statistical Review 52 (1984), 33-81.


## References: Fractional Factorial Designs; <br> Diagonal Structures

- D. J. Finney: The fractional replication of factorial arrangements. Annals of Eugenics 12 (1945), 291-301.
- R. A. Bailey, Peter J. Cameron, Cheryl E. Praeger and Csaba Schneider: The geometry of diagonal groups. Transactions of the American Mathematical Society, in press. doi: 10.1090/tran/8507
- R. A. Bailey, Peter J. Cameron, Michael Kinyon and Cheryl E. Praeger: Diagonal groups and arcs over groups. Designs, Codes and Cryptography 108 (2021). doi: 10.1007/s10623-021-00907-2
- R. A. Bailey and Peter J. Cameron: The diagonal graph. Journal of the Ramanujan Mathematical Society 36 (2021), 353-361.

