

riety Testing		How do we allow for variation between the plots?
seed of each of t Traditionally, an and several plot for example, In the last 12 yea	s of new varieties, typically there is very little he new varieties. experiment has one plot for each new variety s for a well-established "control": $\frac{\hline New Control Total}{30 1 31}$ $\frac{\hline 30 1 31}{1 8 38}$ ars, Cullis and colleagues in Australia ntly Bueno and Gilmour) have suggested	"on any given field agricultural operations, at least for centuries, have followed one of two directions, which are usually those of the rows and columns; consequently streaks of fertility, weed infestation, etc., do, in fact, occur predominantly in those two directions." R. A. Fisher, letter to H. Jeffreys, 30 May 1938
replacing many	occurrences of the the control by double nall number of new varieties:	(selected correspondence edited by J. H. Bennett)
	New New Control Total	(This assumption is dubious for field trials in Australia.)
for example,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	If field operations have been primarily in one direction for a long time, then it is reasonable to divide the fields into blocks
This is an impro	vement if there are no blocks. 3/5	whose length runs along that direction.

The problem

We are given b blocks of size k. We are given v varieties. Assume that

average replication $= \bar{r} = \frac{bk}{v} \le 2.$

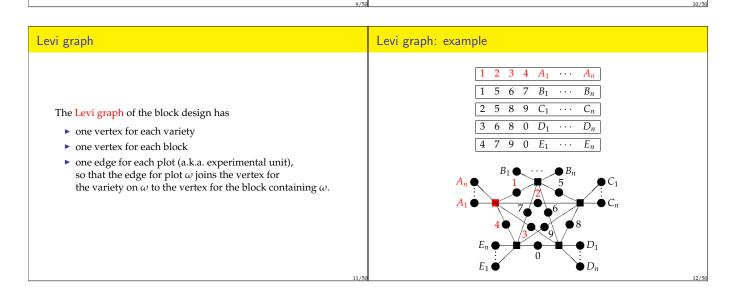
How should we allocate varieties to blocks? What makes a block design good? Linear model, estimation and variance

We measure the response *Y* on each unit in each block.

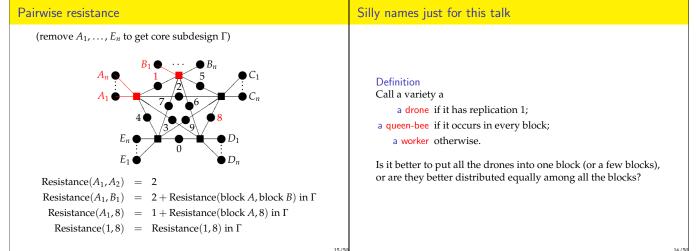
If that unit has variety i and block D, then we assume that

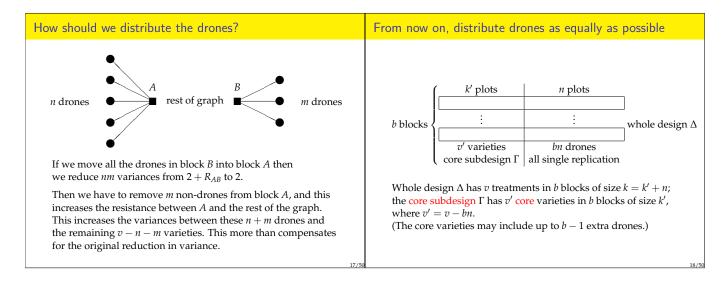
 $Y = \tau_i + \beta_D +$ random noise,

where the random noise is independently normally distributed with zero mean and constant variance σ^2 .


We want to estimate all the simple differences $\tau_i - \tau_j$.

Put


 $V_{ij}\sigma^2 =$ variance of the best linear unbiased estimator for $\tau_i - \tau_j$.


We want all the V_{ij} to be small.

Optimality	An example with $5n + 10$ varieties in 5 blocks of size $4 + n$
Apart from the constant multiple σ^2 , $V_{ij} = \text{variance of the BLUE for } \tau_i - \tau_j.$ Put $V_T = \sum_{i=1}^{v-1} \sum_{j=i+1}^{v} V_{ij} = \text{sum of variances of variety differences.}$ Definition For given values of <i>b</i> (the number of blocks), <i>k</i> (the size of the blocks) and <i>v</i> (the number of varieties), a block design is A-optimal if it minimizes V_T .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

ectrical networks	Electrical networks: variance
 We can consider the Levi graph as an electrical network with a 1-ohm resistance in each edge. Connect a 1-volt battery between vertices <i>i</i> and <i>j</i>. Current flows in the network, according to these rules. 1. Ohm's Law: In every edge, voltage drop = current × resistance = current. 2. Kirchhoff's Voltage Law: The total voltage drop from one vertex to any other vertex is the same whichever path we take from one to the other. 3. Kirchhoff's Current Law: At every vertex which is not connected to the battery, the total current coming in is equal to the total current going out. 	Reminder: V_{ij} = variance of BLUE of $\tau_i - \tau_j$ for varieties <i>i</i> and <i>j</i> . Theorem If R_{ij} is the effective resistance between variety vertices <i>i</i> and <i>j</i> in the Levi graph then $R_{ij} = V_{ij}$. Put: V_{CD} = variance of BLUE of $\beta_C - \beta_D$ for blocks <i>C</i> and <i>D</i> , V_{iC} = variance of BLUE of $\tau_i + \beta_C$ for variety <i>i</i> and block <i>C</i> . Theorem If R_{CD} and R_{iC} are the effective resistances between vertices <i>C</i> and <i>D</i> , and between <i>i</i> and <i>C</i> respectively, in the Levi graph then $R_{CD} = V_{CD}$ and $R_{iC} = V_{iC}$.
Find the total current <i>I</i> from <i>i</i> to <i>j</i> , then use Ohm's Law to define the effective resistance R_{ij} between <i>i</i> and <i>j</i> as $1/I$.	Effective resistances are easy to calculate without matrix inversion if the graph is sparse.

oum of the pairwise variances	Sum of variances in whole design if 1 is equi-replicate
Theorem (cf. Herzberg and Jarrett, 2007) If there are n drones in each block of Δ , and the core subdesign Γ has v' varieties in b blocks of size k' then the sum of the variances of variety differences in Δ $= V_T(\Delta) = bn(bn + v' - 1) + V_T + nV_{BT} + n^2V_B$, where $V_T = the sum of the variances of variety differences in \GammaV_B = the sum of the variances of block differences in \GammaV_{BT} = the sum of the variances of sums ofone treatment and one block in \Gamma.$	$V_{T}(\Delta) = bn(bn + v' - 1) + V_{T} + nV_{BT} + n^{2}V_{B}$ $V_{T} = \text{the sum of the variances of variety differences in } \Gamma$ $V_{B} = \text{the sum of the variances of block differences in } \Gamma$ $V_{BT} = \text{the sum of the variances of sums of one treatment and one block in } \Gamma$ If Γ is equi-replicate with replication r' then $\frac{k'}{b}V_{B} - b = \frac{r'}{v'}V_{T} - v';$ $V_{BT} = \frac{2b}{v'}V_{T} + \frac{v'}{k'}(b - v' - 1),$ and so V_{B} and V_{BT} are both increasing functions of V_{T} . Consequence For a given choice of k' , use the core subdesign Γ which minimizes V_{T} .
um of variances in whole design if there are many drones	An example of this non-intuitive result
$V_T(\Delta) = bn(bn + v' - 1) + V_T + nV_{BT} + n^2V_B$ $V_T = \text{the sum of the variances of variety differences in } \Gamma$ $V_B = \text{the sum of the variances of block differences in } \Gamma$ $V_{BT} = \text{the sum of the variances of sums of}$ $v_{BT} = \text{the sum of the variances of sums of}$	If there are $4(2 + n)$ varieties in 4 blocks of size $4 + n$, the design on the left is A-better than the design on the right if and only if $n < 50$. 1 2 3 4 n drones $1 2 3 n + 1$ drones

. C

and the second second

 V_{BT} = the sum of the variances of sums of one treatment and one block in Γ .

Consequence

A definite result

no matter how big v is.

If n is large, we need to focus on reducing V_B , so it may be best to increase the number of drones and decrease k' (the size of blocks in the core subdesign Γ), so that average replication within Γ is more than 2.

Theorem (Duals of BIBDs cannot be beaten)

property of core subdesign dual of BIBD

then Δ_2 is worse than Δ_1 on the A criterion,

Design

Core subdesign block size in subdesign

then Δ_1 is A-better than Δ_2 .

Suppose that we are given b blocks of size k, and v varieties. For i = 1, 2, let design Δ_i have core subdesign Γ_i with block size k_i . If Γ_1 is the dual of a balanced incomplete block design and $k_1 > k_2$

 Δ_1

 Γ_1

 k_1

 Δ_2

 Γ_2

 k_2

arbitrary

An example of the good result

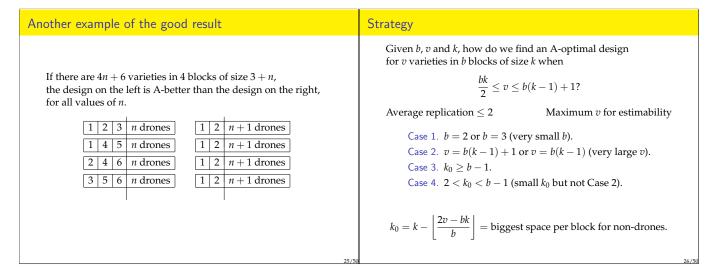
1 2 5 6 *n* drones 3 6 7 8 *n* drones

4 5 7 8 *n* drones

If there are 7(3 + n) varieties in 7 blocks of size 6 + n, the design on the left is A-better than the design on the right, for all values of *n*.

1	2	3	4	5	6	<i>n</i> drones
1	7	8	9	10	11	<i>n</i> drones
2	7	12	13	14	15	<i>n</i> drones
3	8	12	16	17	18	<i>n</i> drones
4	9	13	16	19	20	<i>n</i> drones
5	10	14	17	19	21	<i>n</i> drones
6	11	15	18	20	21	<i>n</i> drones

1 2 5 7 n + 2 drones 1 2 3 6 n + 2 drones 2 3 4 7 n + 2 drones 1 3 4 5 n + 2 drones 2 4 5 6 n + 2 drones 2 4 5 6 n + 2 drones	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
1 2 3 6 n + 2 drones 2 3 4 7 n + 2 drones 1 3 4 5 n + 2 drones 2 4 5 6 n + 2 drones 2 4 5 6 n + 2 drones	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4 6	5 7	n+2 drones
2 3 4 7 n+2 drones 1 3 4 5 n+2 drones 2 4 5 6 n+2 drones	2 3 4 7 n+2 drone 1 3 4 5 n+2 drone 2 4 5 6 n+2 drone	1	2 5	5 7	n+2 drones
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 3 4 5 <i>n</i> +2 drone 2 4 5 6 <i>n</i> +2 drone	1	2 3	6	n+2 drones
2 4 5 6 n + 2 drones	2 4 5 6 $n + 2$ drone	2	3 4	l 7	n+2 drones
		1	3 4	l 5	n+2 drones
3 5 6 7 $n+2$ drones	3 5 6 7 <i>n</i> +2 drone	2	4 5	5 6	n+2 drones
		3	5 6	5 7	n+2 drones


24/50

1 2 4 n+1 drones

1 3 4 n+1 drones

 $2 \quad 3 \quad 4 \quad n+1 \text{ drones}$

Case 1. Only 2 blocks, of size <i>k</i>	Case 1 continued. 3 blocks of size k
Morgan and Jin (2007) showed that the A-optimal designs are those with $2n$ drones and q queen bees, where $n = n_0 = v - k$ and $q = k' = k_0 = k - n_0 = 2k - v$. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Using the result about drone-distribution and the nice theorem about duals of BIBDs, RAB has shown that the A-optimal designs are as follows when <i>v</i> is divisible by 3 (and presumably small changes deal with the other cases). There are 3 <i>w</i> workers and 3 <i>n</i> drones, where $3w = 3k - v$ and $n = n_0 = k - 2w$ and $k' = k_0 = 2w$. $\boxed{1 \ 2 \ 4 \ 5 \ \dots \ 3w - 2 \ 3w - 1 \ A_1 \ A_2 \ A_3 \ \dots \ A_n}$ $\boxed{1 \ 3 \ 4 \ 6 \ \dots \ 3w - 2 \ 3w \ B_1 \ B_2 \ B_3 \ \dots \ B_n}$ $\boxed{2 \ 3 \ 5 \ 6 \ \dots \ 3w - 1 \ 3w \ C_1 \ C_2 \ C_3 \ \dots \ C_n}$ $w copies of design usingall pairs from 3 drones$
27/	50 28/50

Case 2. $v = b(k-1) + 1$	Case 2 continued. $v = b(k-1)$
This is the maximum number of varieties that can be tested in b blocks of size k with all comparisons estimable. Mandal, Shah and Sinha (1991), for $k = 2$, Dean and co-authors,	The A-optimal designs were found for all cases by Krafft and Schaefer (1997). small k and b increase k if $b \ge 5$ then increase b
and Bailey and Cameron (2013), for general block size, showed that, no matter how many blocks there are, the A-optimal design has the following form.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1 queen $v-1$ drones 29/5	Youden and Connor (1953) had recommended chain designs.

Case 2. v = b(k-1) revisited

Theorem

Consider a design with b blocks of size 2. For $2 \le s \le b$, let Γ_s be the design consisting of a chain of length s, one of whose varieties is in all blocks outside the chain, while all other varieties are drones. Then

$$V_B(\Gamma_s) = \frac{1}{6} [-s^3 + 2bs^2 - (6b - 4)s + 6b^2 - 5b]$$

Consequence

- If b = 3 then V_B(Γ₂) > V_B(Γ₃) so there is no need for queens.
 If b = 4 then V_B(Γ₂) = V_B(Γ₄) < V_B(Γ₃),
- but $V_T(\Gamma_2) > V_T(\Gamma_4)$ and $V_{BT}(\Gamma_2) > V_{BT}(\Gamma_4)$, so do not use Γ_2 or Γ_3 (no need for queens).
- 3. If $b \ge 5$ then $V_B(\Gamma_2) < V_B(\Gamma_3) < \cdots < V_B(\Gamma_b)$, so we need to use smaller chains as v gets larger.

Case 3. $k \ge k_0 \ge b - 1$

For simplicity, assume that b divides 2v, so that

$$n_0 = \frac{2v - bk}{b} =$$
minimum number of drones per block

Then

$$\frac{b(2k-b+1)}{2} \ge v \ge \frac{bk}{2} \ge \frac{b(b-1)}{2}.$$

Let Γ_0 be the design for b(b-1)/2 varieties replicated twice in b blocks of size b-1in such a way that there is one variety in common to each pair of blocks. This is A-optimal for these numbers.

Case 3 continued. $k_0 \geq b-1$	Case 3. Example: $b=8$ and $k=15$ (so $60 \le v \le 92$)
 Case 3 continued. k₀ ≥ b − 1 n₀ = minimal number of drones per block. Construction Method put n₀ drones in each block; put in one copy of Γ₀; put in as many further copies of Γ₀ as possible (if this uses up all the space, then the nice theorem shows that this is A-optimal); in any remaining space, use a good design for workers with replication 2 (so long as there is at least one copy of Γ₀, it probably doesn't make much difference which one is used). 	Case 3. Example: $b = 8$ and $k = 15$ (so $60 \le v \le 92$) 60 varieties: all workers ($n_0 = 0$) 1 2 3 4 5 6 7 29 30 31 32 33 34 35 57 1 8 9 10 11 12 13 29 36 37 38 39 40 41 57 2 8 14 15 16 17 18 30 36 42 43 44 45 46 58 3 9 14 19 20 21 22 31 37 42 47 48 49 50 58 4 10 15 19 23 24 25 32 38 43 47 51 52 53 59 5 11 16 20 23 26 27 33 39 44 48 51 54 55 59 6 12 17 21 24 26 28 34
n producty usesn i make much afference which one is used).	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Case 3. Example: $b=8$ and $k=15$ (so $60 \le v \le 9$	(92) Case 3. Example: $b = 8$ and $k = 15$ (so $60 \le v \le 92$)
76 varieties: 44 workers, 32 drones ($n_0 = 4$)	92 varieties: 28 workers, 64 drones ($n_0 = 8$)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	35/50 36/50

Case 3. A bad example: $b =$	= 4 and $k_0=4$	Case 4. $2 < k_0 < b - 1$
$v = 4n + 8 \text{ and } k = 4 + n$ My strategy gives $1 2 3 7 A_1 \dots A_n$ $1 4 5 7 B_1 \dots B_n$ $2 4 6 8 C_1 \dots C_n$ $3 5 6 8 D_1 \dots D_n$ $\Gamma_0 \qquad \text{drones}$	which is worse than $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	For various values of $k_i \leq k_0$, find the best core subdesign Γ_i for v'_i varieties in <i>b</i> blocks of size k_i . (For equi-replicate core subdesigns, it is often easier to find the best dual design, which is obtained by interchanging the roles of blocks and varieties.) $V_T(\Gamma_i) =$ the sum of the variances of variety differences in Γ_i $V_B(\Gamma_i) =$ the sum of the variances of block differences in Γ_i $V_{BT}(\Gamma_i) =$ the sum of the variances of sums of one treatment and one block in Γ_i . If there are n_i drones in each block then, in the whole design Δ , $V_T(\Delta) = bn_i(bn_i + v'_i - 1) + V_T(\Gamma_i) + n_i V_{BT}(\Gamma_i) + n_i^2 V_B(\Gamma_i)$. Use this formula to find the core subdesign which gives the smallest $V_T(\Delta)$. As the number of varieties increases, it becomes more
	37/5	important to choose Γ_i with a small value of $V_B(\Gamma_i)$.

Best design for b blocks known to RAB Γ_1 Γ_2 Γ_3 Γ_4 k_i 23342 queens,2 queens,b workers2b workers $both boring2 workers (rep 2)rep 3rep 2b=611^-0.850.87b=711^-0.860.92b=811^-0.890.93b=911^-0.92b=1011^-0.92b=1111^-0.98b=1211^-0.98b=131^-11.07b=141^-1.011.08(One worker for each pair of blocksexcept for \{A, B\}, \{C, D\}, \{E, F\} and \{G, H\}.)$	Case 4 continued. $k_0 = 4 < b - 1$, V	$V_B(\Gamma_i) \div b$	(b-1)/2	Case 4 continued. $2 < k_0 < b-1$ when $b = 8$: $k_0 = 6$
	$\begin{array}{c c} & \text{Best design for b blocks}\\ & \Gamma_1 & \Gamma_2 \\ & k_i & 2 & 3 \\ & 2 \text{ queens, } & 2 \text{ queens, } \\ & \text{ both boring } & 2 \text{ workers (rep 2)} \\ \hline b = 6 & 1 & 1^- \\ & b = 7 & 1 & 1^- \\ & b = 8 & 1 & 1^- \\ & b = 9 & 1 & 1^- \\ & b = 10 & 1 & 1^- \\ & b = 11 & 1 & 1^- \\ & b = 12 & 1 & 1^- \\ & b = 13 & 1 & 1^- \\ & b = 14 & 1 & 1^- \\ & b = 15 & 1 & 1^- \\ & \text{As v increases, Γ_3 becomes better than Γ_4} \end{array}$	s known to I Γ ₃ 3 b workers rep 3 0.85 0.86 0.89 0.92 0.98 1 1.01	$\begin{array}{c} \text{RAB} & & & \\ & & \Gamma_4 & & \\ & 4 & & \\ & 2b \text{ workers} & \\ & & \text{rep 2} & \\ & 0.87 & & \\ & 0.92 & & \\ & 0.93 & & \\ & 1.07 & \\ & 1.08 & & \end{array}$	$k = k_0 = 6, \text{ and } 24 \text{ varieties, all workers, all replicated twice.}$ $\boxed{1 \ 2 \ 3 \ 4 \ 5 \ 6}$ $\boxed{7 \ 8 \ 9 \ 10 \ 11 \ 12}$ $\boxed{1 \ 7 \ 13 \ 14 \ 15 \ 16}$ $\boxed{2 \ 8 \ 17 \ 18 \ 19 \ 20}$ $\boxed{3 \ 9 \ 13 \ 17 \ 21 \ 22}$ $\boxed{4 \ 10 \ 14 \ 18 \ 23 \ 24}$ $\boxed{5 \ 11 \ 15 \ 19 \ 21 \ 23}$ $\boxed{6 \ 12 \ 16 \ 20 \ 22 \ 24}$ (One worker for each pair of blocks

Case 4 continued. $k = 5$ and $k = 6$ when $b = 8$: $k_0 = 5$	Case 4 continued. $k = 5$ and $k = 6$ when $b = 8$: $k_0 = 4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Case 4 continued. $k = 5$ and $k = 6$ when $b = 8$	$k_0 = 3$ Health Warning	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The overall message is that there can be phase changes as the spare capacity for replication $(bk - v)$ decreases. Therefore it is necessary to compare core subdesigns Γ_i with different block size k_i . Although this overall message is correct, no one has checked the arithmetic in the examples presented, so individual cases may be wrong.	44/50

Warning for specialists in optimality	References: more equal replication
The results given are for A-optimality. A design is MV-optimal if it minimizes the value of the maximal V_{ij} . If $2v - bk \le k - 1$ then it is possible to put all the drones in a single block, and the MV-optimal design may have this form. A design is D-optimal if it minimizes the volume of the confidence ellipsoid for the vector of fitted values ($\tau_1, \tau_2,$) under the assumption of independent identically distributed normal errors. The D-optimal designs have core subdesigns with the largest possible value of k' (and so the smallest possible number of drones), no matter how large the number of varieties.	 J. S. S. Bueno Filho and S. G. Gilmour: Planning incomplete block experiments when treatments are genetically related. <i>Biometrics</i>, 59, (2003), 375–381. B. R. Cullis, A. B. Smith and N. E. Coombes: On the design of early generation variety trials with correlated data. <i>Journal of Agricultural, Biological and Environmental Statistics</i>, 11, (2006), 381–393. A. B. Smith, P. Lim and B. R. Cullis: The design and analysis of multi-phase plant breeding experiments. <i>Journal of Agricultural Science</i>, 144, (2006), 393–409.

References: Levi graph	References: core subdesigns
 F. W. Levi: <i>Finite Geometrical Systems</i>, University of Calcutta, Calcutta, 1942. iii + 51 pp. N. Gaffke: <i>Optimale Versuchsplanung für linear Zwei-Faktor</i> <i>Modelle</i>. PhD thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, 1978. N. Gaffke: D-optimal block designs with at most six varieties, <i>Journal</i> <i>of Statistical Planning and Inference</i>, 6 (1982), 183–200. T. Tjur: Block designs and electrical networks, <i>Annals of Statistics</i>, 19 (1991), 1010–1027. R. A. Bailey and P. J. Cameron: Using graphs to find the best block designs. In <i>Topics in Structural Graph Theory</i> (eds. L. W. Beineke and R. J. Wilson), Cambridge University Press, Cambridge, 2013, pp. 282–317. 	 W. J. Youden and W. S. Connor: The chain block design. <i>Biometrics</i>, 9, (1953), 127–140. A. M. Herzberg and D. F. Andrews: The robustness of chain block designs and coat-of-mail designs. <i>Communications in Statistics—Theory and Methods</i>, 7 (1978), 479–485. A. M. Herzberg and R. G. Jarrett: A-optimal block designs with additional singly replicated treatments. <i>Journal of Applied Statistics</i>, 34 (2007), 61–70.

References: few blocks	References: (nearly) maximal number of varieties
 J. P. Morgan and B. Jin: Optimal experimentation in two blocks. Journal of Statistical Theory and Practice, 1, (2007), 357–375. 	 N. K. Mandal, K. R. Shah and B. K. Sinha: Uncertain resources and optimal designs: problems and perspectives. <i>Calcutta Statistical Association Bulletin</i>, 40, (1991), 267–282. O. Krafft and M. Schaefer: A-optimal connected block designs with nearly minimal number of observations. <i>Journal of Statistical Planning and Inference</i>, 65, (1997), 357–386.