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Abstract

In the early stages of testing new varieties, it is common that
there are only small quantities of seed of many new varieties.

In the UK (and some other countries with centuries of
agriculture on the same land) variation within a field can be
well represented by a division into blocks.

Even when that is not the case, subsequent phases
(such as testing for milling quality,
or evaluation in a laboratory)
have natural blocks, such as days or runs of a machine.

I will discuss how to arrange the varieties in a block design
when the average replication is less than two.
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Variety Testing

In breeding trials of new varieties, typically there is very little
seed of each of the new varieties.

Traditionally, an experiment has one plot for each new variety
and several plots for a well-established “control”:

for example,
New Control Total

30 1 31
1 8 38

In the last 12 years, Cullis and colleagues in Australia
(and independently Bueno and Gilmour) have suggested
replacing many occurrences of the the control by double
replicates of a small number of new varieties:

for example,
New New Control Total

24 6 1 31
1 2 2 38

This is an improvement if there are no blocks.
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How do we allow for variation between the plots?

“. . . on any given field agricultural operations, at least for
centuries, have followed one of two directions, which are
usually those of the rows and columns; consequently streaks of
fertility, weed infestation, etc., do, in fact, occur predominantly
in those two directions.”

R. A. Fisher,
letter to H. Jeffreys,

30 May 1938
(selected correspondence edited by J. H. Bennett)

(This assumption is dubious for field trials in Australia.)

If field operations have been primarily in one direction for a
long time, then it is reasonable to divide the fields into blocks
whose length runs along that direction.
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Blocking in the second phase: an example

The milling phase of a wheat variety trial has 224 varieties to be
compared. Only 10 can be milled in any one day. The trial can
take place over 28 days, so there are 28 blocks of size 10.

There are only 280− 224 = 56 experimental units “spare” for
replication. How should these be allocated?

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication
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Two possible designs for 224 varieties in 28 blocks of 10

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication

28 blocks



4 units 6 units

...
...

56 varieties 168 varieties
all replicated twice all single replication
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The problem

We are given b blocks of size k. We are given v varieties.
Assume that

average replication = r̄ =
bk
v
≤ 2.

How should we allocate varieties to blocks?

What makes a block design good?
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Linear model, estimation and variance

We measure the response Y on each unit in each block.

If that unit has variety i and block D, then we assume that

Y = τi + βD + random noise,

where the random noise is independently normally distributed
with zero mean and constant variance σ2.

We want to estimate all the simple differences τi − τj.

Put

Vij σ2 =
variance of the best linear unbiased estimator
for τi − τj.

We want all the Vij to be small.
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Optimality

Apart from the constant multiple σ2,

Vij = variance of the BLUE for τi − τj.

Put

VT =
v−1

∑
i=1

v

∑
j=i+1

Vij = sum of variances of variety differences.

Definition
For given values of b (the number of blocks),
k (the size of the blocks) and v (the number of varieties),
a block design is A-optimal if it minimizes VT.

9/50

An example with 5n + 10 varieties in 5 blocks of size 4 + n

1 2 3 4 A1 · · · An

1 5 6 7 B1 · · · Bn

2 5 8 9 C1 · · · Cn

3 6 8 0 D1 · · · Dn

4 7 9 0 E1 · · · En

How do we calculate pairwise variances in a generic design?
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Levi graph

The Levi graph of the block design has

I one vertex for each variety
I one vertex for each block
I one edge for each plot (a.k.a. experimental unit),

so that the edge for plot ω joins the vertex for
the variety on ω to the vertex for the block containing ω.
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Levi graph: example

1 2 3 4 A1 · · · An

1 5 6 7 B1 · · · Bn

2 5 8 9 C1 · · · Cn

3 6 8 0 D1 · · · Dn

4 7 9 0 E1 · · · En
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Electrical networks

We can consider the Levi graph as an electrical network
with a 1-ohm resistance in each edge.
Connect a 1-volt battery between vertices i and j.
Current flows in the network, according to these rules.

1. Ohm’s Law:
In every edge,
voltage drop = current × resistance = current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same whichever path we take from one to the other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery,
the total current coming in is equal to the total current
going out.

Find the total current I from i to j, then use Ohm’s Law to
define the effective resistance Rij between i and j as 1/I.
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Electrical networks: variance

Reminder: Vij = variance of BLUE of τi− τj for varieties i and j.

Theorem
If Rij is the effective resistance between variety vertices i and j
in the Levi graph then

Rij = Vij.

Put: VCD = variance of BLUE of βC − βD for blocks C and D,
ViC = variance of BLUE of τi + βC for variety i and block C.

Theorem
If RCD and RiC are the effective resistances between vertices C and D,
and between i and C respectively, in the Levi graph then

RCD = VCD and RiC = ViC.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Pairwise resistance

(remove A1, . . . , En to get core subdesign Γ)
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Resistance(A1, A2) = 2
Resistance(A1, B1) = 2 + Resistance(block A, block B) in Γ

Resistance(A1, 8) = 1 + Resistance(block A, 8) in Γ
Resistance(1, 8) = Resistance(1, 8) in Γ
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Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;
a queen-bee if it occurs in every block;

a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?
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How should we distribute the drones?
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If we move all the drones in block B into block A then
we reduce nm variances from 2 + RAB to 2.

Then we have to remove m non-drones from block A, and this
increases the resistance between A and the rest of the graph.
This increases the variances between these n + m drones and
the remaining v− n−m varieties. This more than compensates
for the original reduction in variance.
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From now on, distribute drones as equally as possible

b blocks



k′ plots n plots

...
...

v′ varieties bn drones
core subdesign Γ all single replication

whole design ∆

Whole design ∆ has v treatments in b blocks of size k = k′ + n;
the core subdesign Γ has v′ core varieties in b blocks of size k′,
where v′ = v− bn.
(The core varieties may include up to b− 1 extra drones.)
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Sum of the pairwise variances

Theorem (cf. Herzberg and Jarrett, 2007)

If there are n drones in each block of ∆,
and the core subdesign Γ has v′ varieties in b blocks of size k′
then the sum of the variances of variety differences in ∆

= VT(∆) = bn(bn + v′ − 1) + VT + nVBT + n2VB,
where

VT = the sum of the variances of variety differences in Γ
VB = the sum of the variances of block differences in Γ

VBT = the sum of the variances of sums of
one treatment and one block in Γ.
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Sum of variances in whole design if Γ is equi-replicate

VT(∆) = bn(bn + v′ − 1) + VT + nVBT + n2VB

VT = the sum of the variances of variety differences in Γ
VB = the sum of the variances of block differences in Γ

VBT = the sum of the variances of sums of
one treatment and one block in Γ.

If Γ is equi-replicate with replication r′ then

k′

b
VB − b =

r′

v′
VT − v′;

VBT =
2b
v′

VT +
v′

k′
(b− v′ − 1),

and so VB and VBT are both increasing functions of VT.

Consequence

For a given choice of k′, use the core subdesign Γ which minimizes VT.
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Sum of variances in whole design if there are many drones

VT(∆) = bn(bn + v′ − 1) + VT + nVBT + n2VB

VT = the sum of the variances of variety differences in Γ
VB = the sum of the variances of block differences in Γ

VBT = the sum of the variances of sums of
one treatment and one block in Γ.

Consequence

If n is large, we need to focus on reducing VB,
so it may be best to increase the number of drones
and decrease k′ (the size of blocks in the core subdesign Γ),
so that average replication within Γ is more than 2.
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An example of this non-intuitive result

If there are 4(2 + n) varieties in 4 blocks of size 4 + n,
the design on the left is A-better than the design on the right
if and only if n < 50.

1 2 3 4 n drones

1 2 5 6 n drones

3 6 7 8 n drones

4 5 7 8 n drones

1 2 3 n + 1 drones

1 2 4 n + 1 drones

1 3 4 n + 1 drones

2 3 4 n + 1 drones
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A definite result

Theorem (Duals of BIBDs cannot be beaten)

Suppose that we are given b blocks of size k, and v varieties.
For i = 1, 2, let design ∆i have core subdesign Γi with block size ki.
If Γ1 is the dual of a balanced incomplete block design and k1 > k2
then ∆2 is worse than ∆1 on the A criterion,
no matter how big v is.

Design ∆1 ∆2
Core subdesign Γ1 Γ2

block size in subdesign k1 > k2
property of core subdesign dual of BIBD arbitrary

then ∆1 is A-better than ∆2.
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An example of the good result

If there are 7(3 + n) varieties in 7 blocks of size 6 + n,
the design on the left is A-better than the design on the right,
for all values of n.

1 2 3 4 5 6 n drones

1 7 8 9 10 11 n drones

2 7 12 13 14 15 n drones

3 8 12 16 17 18 n drones

4 9 13 16 19 20 n drones

5 10 14 17 19 21 n drones

6 11 15 18 20 21 n drones

1 4 6 7 n + 2 drones

1 2 5 7 n + 2 drones

1 2 3 6 n + 2 drones

2 3 4 7 n + 2 drones

1 3 4 5 n + 2 drones

2 4 5 6 n + 2 drones

3 5 6 7 n + 2 drones

24/50



Another example of the good result

If there are 4n + 6 varieties in 4 blocks of size 3 + n,
the design on the left is A-better than the design on the right,
for all values of n.

1 2 3 n drones

1 4 5 n drones

2 4 6 n drones

3 5 6 n drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones
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Strategy

Given b, v and k, how do we find an A-optimal design
for v varieties in b blocks of size k when

bk
2
≤ v ≤ b(k− 1) + 1?

Average replication ≤ 2 Maximum v for estimability

Case 1. b = 2 or b = 3 (very small b).
Case 2. v = b(k− 1) + 1 or v = b(k− 1) (very large v).
Case 3. k0 ≥ b− 1.
Case 4. 2 < k0 < b− 1 (small k0 but not Case 2).

k0 = k−
⌊

2v− bk
b

⌋
= biggest space per block for non-drones.
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Case 1. Only 2 blocks, of size k

Morgan and Jin (2007) showed that the A-optimal designs are
those with 2n drones and q queen bees,
where n = n0 = v− k and q = k′ = k0 = k− n0 = 2k− v.

1 2 3 4 . . . q A1 A2 A3 . . . An

1 2 3 4 . . . q B1 B2 B3 . . . Bn
queens drones
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Case 1 continued. 3 blocks of size k

Using the result about drone-distribution and
the nice theorem about duals of BIBDs, RAB has shown that
the A-optimal designs are as follows when v is divisible by 3
(and presumably small changes deal with the other cases).
There are 3w workers and 3n drones,
where 3w = 3k− v and n = n0 = k− 2w and k′ = k0 = 2w.

1 2 4 5 . . . 3w− 2 3w− 1 A1 A2 A3 . . . An

1 3 4 6 . . . 3w− 2 3w B1 B2 B3 . . . Bn

2 3 5 6 . . . 3w− 1 3w C1 C2 C3 . . . Cn

w copies of design using
all pairs from 3 drones
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Case 2. v = b(k− 1) + 1

This is the maximum number of varieties that can be tested in
b blocks of size k with all comparisons estimable.

Mandal, Shah and Sinha (1991), for k = 2,
Dean and co-authors,
and Bailey and Cameron (2013), for general block size,
showed that, no matter how many blocks there are,
the A-optimal design has the following form.

1 A1 A2 A3 . . . Ak−1

1 B1 B2 B3 . . . Bk−1

1 C1 C2 C3 . . . Ck−1

1 D1 D2 D3 . . . Dk−1

1 E1 E2 E3 . . . Ek−1

1 queen v− 1 drones
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Case 2 continued. v = b(k− 1)

The A-optimal designs were found for all cases
by Krafft and Schaefer (1997).

small k and b increase k if b ≥ 5 then increase b

1 2 A1

2 3 B1

3 4 C1

4 5 D1

5 6 E1

6 1 F1
chain

1 2 A1 A2

2 3 B1 B2

3 1 C1 C2

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

smaller
chain

1 2 A1 A2

1 2 B1 B2

1 C1 C2 C3

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

1 G1 G2 G3

1 queen

Youden and Connor (1953) had recommended chain designs.
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Case 2. v = b(k− 1) revisited

Theorem
Consider a design with b blocks of size 2. For 2 ≤ s ≤ b, let Γs be the
design consisting of a chain of length s, one of whose varieties is in all
blocks outside the chain, while all other varieties are drones. Then

VB(Γs) =
1
6
[−s3 + 2bs2 − (6b− 4)s + 6b2 − 5b].

Consequence

1. If b = 3 then VB(Γ2) > VB(Γ3) so there is no need for queens.
2. If b = 4 then VB(Γ2) = VB(Γ4) < VB(Γ3),

but VT(Γ2) > VT(Γ4) and VBT(Γ2) > VBT(Γ4),
so do not use Γ2 or Γ3 (no need for queens).

3. If b ≥ 5 then VB(Γ2) < VB(Γ3) < · · · < VB(Γb),
so we need to use smaller chains as v gets larger.
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Case 3. k ≥ k0 ≥ b− 1

For simplicity, assume that b divides 2v, so that

n0 =
2v− bk

b
= minimum number of drones per block.

Then
b(2k− b + 1)

2
≥ v ≥ bk

2
≥ b(b− 1)

2
.

Let Γ0 be the design for b(b− 1)/2 varieties
replicated twice in b blocks of size b− 1
in such a way that
there is one variety in common to each pair of blocks.
This is A-optimal for these numbers.
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Case 3 continued. k0 ≥ b− 1

n0 = minimal number of drones per block.

Construction Method

1. put n0 drones in each block;
2. put in one copy of Γ0;
3. put in as many further copies of Γ0 as possible

(if this uses up all the space, then the nice theorem shows that
this is A-optimal);

4. in any remaining space,
use a good design for workers with replication 2
(so long as there is at least one copy of Γ0,
it probably doesn’t make much difference which one is used).
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

60 varieties: all workers (n0 = 0)

1 2 3 4 5 6 7 29 30 31 32 33 34 35 57

1 8 9 10 11 12 13 29 36 37 38 39 40 41 57

2 8 14 15 16 17 18 30 36 42 43 44 45 46 58

3 9 14 19 20 21 22 31 37 42 47 48 49 50 58

4 10 15 19 23 24 25 32 38 43 47 51 52 53 59

5 11 16 20 23 26 27 33 39 44 48 51 54 55 59

6 12 17 21 24 26 28 34 40 45 49 52 54 56 60

7 13 18 22 25 27 28 35 41 46 50 53 55 56 60
one copy of Γ0 another copy of Γ0
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

76 varieties: 44 workers, 32 drones (n0 = 4)

1 2 3 4 5 6 7 29 30 31 32 A1 A2 A3 A4

1 8 9 10 11 12 13 33 34 35 36 B1 B2 B3 B4

2 8 14 15 16 17 18 37 38 39 40 C1 C2 C3 C4

3 9 14 19 20 21 22 41 42 43 44 D1 D2 D3 D4

4 10 15 19 23 24 25 29 33 37 41 E1 E2 E3 E4

5 11 16 20 23 26 27 30 34 38 42 F1 F2 F3 F4

6 12 17 21 24 26 28 31 35 39 43 G1 G2 G3 G4

7 13 18 22 25 27 28 32 36 40 44 H1 H2 H3 H4
Γ0 16 workers drones

replication 2
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

92 varieties: 28 workers, 64 drones (n0 = 8)

1 2 3 4 5 6 7 A1 A2 A3 A4 A5 A6 A7 A8

1 8 9 10 11 12 13 B1 B2 B3 B4 B5 B6 B7 B8

2 8 14 15 16 17 18 C1 C2 C3 C4 C5 C6 C7 C8

3 9 14 19 20 21 22 D1 D2 D3 D4 D5 D6 D7 D8

4 10 15 19 23 24 25 E1 E2 E3 E4 E5 E6 E7 E8

5 11 16 20 23 26 27 F1 F2 F3 F4 F5 F6 F7 F8

6 12 17 21 24 26 28 G1 G2 G3 G4 G5 G6 G7 G8

7 13 18 22 25 27 28 H1 H2 H3 H4 H5 H6 H7 H8

Γ0 drones
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Case 3. A bad example: b = 4 and k0 = 4

v = 4n + 8 and k = 4 + n

My strategy gives

1 2 3 7 A1 . . . An

1 4 5 7 B1 . . . Bn

2 4 6 8 C1 . . . Cn

3 5 6 8 D1 . . . Dn
Γ0 drones

which is worse than

1 2 3 A1 . . . An+1

1 2 4 B1 . . . Bn+1

1 3 4 C1 . . . Cn+1

2 3 4 D1 . . . Dn+1
k′ = 3 drones
rep 3

when n ≥ 50.
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Case 4. 2 < k0 < b− 1

For various values of ki ≤ k0,
find the best core subdesign Γi for v′i varieties in b blocks of
size ki. (For equi-replicate core subdesigns,
it is often easier to find the best dual design, which is obtained
by interchanging the roles of blocks and varieties.)

VT(Γi) = the sum of the variances of variety differences in Γi

VB(Γi) = the sum of the variances of block differences in Γi

VBT(Γi) = the sum of the variances of sums of
one treatment and one block in Γi.

If there are ni drones in each block then, in the whole design ∆,

VT(∆) = bni(bni + v′i − 1) + VT(Γi) + niVBT(Γi) + n2
i VB(Γi).

Use this formula to find the core subdesign which gives the
smallest VT(∆).
As the number of varieties increases, it becomes more
important to choose Γi with a small value of VB(Γi).
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Case 4 continued. k0 = 4 < b− 1, VB(Γi)÷ b(b− 1)/2
Best design for b blocks known to RAB

Γ1 Γ2 Γ3 Γ4
ki 2 3 3 4

2 queens, 2 queens, b workers 2b workers
both boring 2 workers (rep 2) rep 3 rep 2

b = 6 1 1− 0.85 0.87
b = 7 1 1− 0.86 0.92
b = 8 1 1− 0.89 0.93
b = 9 1 1− 0.92
b = 10 1 1−
b = 11 1 1−
b = 12 1 1− 0.98
b = 13 1 1− 1 1.07
b = 14 1 1−
b = 15 1 1− 1.01 1.08

As v increases, Γ3 becomes better than Γ4.
If b ≥ 14, then, as v increases, Γ1 and Γ2 become better than Γ3.
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Case 4 continued. 2 < k0 < b− 1 when b = 8: k0 = 6

k = k0 = 6, and 24 varieties, all workers, all replicated twice.

1 2 3 4 5 6

7 8 9 10 11 12

1 7 13 14 15 16

2 8 17 18 19 20

3 9 13 17 21 22

4 10 14 18 23 24

5 11 15 19 21 23

6 12 16 20 22 24

(One worker for each pair of blocks
except for {A, B}, {C, D}, {E, F} and {G, H}.)
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 5

k = 5 k = 6
20 varieties: 28 varieties:

20 workers, no drones 20 workers, 8 drones

1 2 3 4 5

6 7 8 9 10

1 11 12 13 14

2 6 15 16 17

3 7 11 18 19

4 8 12 15 20

5 9 13 16 18

10 14 17 19 20

1 2 3 4 5 A1

6 7 8 9 10 B1

1 11 12 13 14 C1

2 6 15 16 17 D1

3 7 11 18 19 E1

4 8 12 15 20 F1

5 9 13 16 18 G1

10 14 17 19 20 H1
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 4

k = 5 k = 6
24 varieties: 32 varieties:

16 workers, 8 drones 8 workers, 24 drones

1 2 3 4 A1

5 6 7 8 B1

9 10 11 12 C1

13 14 15 16 D1

1 5 9 13 E1

2 6 10 14 F1

3 7 11 15 G1

4 8 12 16 H1
k′ = 4
rep = 2

1 2 4 A1 A2 A3

2 3 5 B1 B2 B3

3 4 6 C1 C2 C3

4 5 7 D1 D2 D3

5 6 8 E1 E2 E3

6 7 1 F1 F2 F3

7 8 2 G1 G2 G3

8 1 3 H1 H2 H3

k′ = 3
rep 3
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 3

k = 5 k = 6
28 varieties: 36 varieties:

12 workers, 16 drones 12 workers, 24 drones

1 2 3 A1 A2

1 4 5 B1 B2

4 6 7 C1 C2

6 8 9 D1 D2

2 8 10 E1 E2

5 10 11 F1 F2

7 11 12 G1 G2

3 9 12 H1 H2

1 2 3 A1 A2 A3

1 4 5 B1 B2 B3

4 6 7 C1 C2 C3

6 8 9 D1 D2 D3

2 8 10 E1 E2 E3

5 10 11 F1 F2 F3

7 11 12 G1 G2 G3

3 9 12 H1 H2 H3

43/50

Health Warning

The overall message is that there can be phase changes as the
spare capacity for replication (bk− v) decreases.
Therefore it is necessary to compare core subdesigns Γi with
different block size ki.

Although this overall message is correct,
no one has checked the arithmetic in the examples presented,
so individual cases may be wrong.
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Warning for specialists in optimality

The results given are for A-optimality.

A design is MV-optimal if it minimizes the value of the
maximal Vij.
If 2v− bk ≤ k− 1 then it is possible to put all the drones in a
single block, and the MV-optimal design may have this form.

A design is D-optimal if it minimizes the volume of the
confidence ellipsoid for the vector of fitted values (τ1, τ2, . . .)
under the assumption of independent identically distributed
normal errors.
The D-optimal designs have core subdesigns with the largest
possible value of k′ (and so the smallest possible number of
drones), no matter how large the number of varieties.
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