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Abstract

In the 1920s, R. A. Fisher, at Rothamsted Experimental Station
in Harpenden, recommended Latin squares for agricultural
crop experiments. At about the same time, Jerzy Neyman
developed the same idea during his doctoral study at the
University of Warsaw. However, there is evidence of their
much earlier use in experiments.
Euler had made his famous conjecture about Graeco-Latin
squares in 1782. There was a spectacular refutation in 1960.
I shall say something about the different uses of Latin squares
in designed experiments. This needs methods of construction,
of counting, and of randomization.
Fisher and Neyman had a famous falling out over Latin
squares in 1935 when Neyman proved that use of Latin squares
in experiments gives biased results. A six-week international
workshop in Boulder, Colorado in 1957 resolved this, but the
misunderstanding surfaced again in a Statistics paper
published in 2017.
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What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an n× n array of cells in which
n symbols are placed, one per cell, in such a way that each
symbol occurs once in each row and once in each column.

The symbols may be letters, numbers, colours, . . .
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A Latin square of order 8
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A Latin square of order 6

E B F A C D

B C D E F A

A E C B D F

F D E C A B

D A B F E C

C F A D B E
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A stained glass window in Caius College, Cambridge

photograph by
J. P. Morgan
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And on the opposite side of the hall

R. A. Fisher promoted
the use of Latin squares
in experiments while
at Rothamsted (1919–
1933) and his 1935 book
The Design of Experi-
ments.
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Stained glass window; book cover; INI logo
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Latin squares on book covers

6th edition 7th edition
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A Latin square of order 7

This Latin square was
on the cover of the first
edition of The Design of
Experiments.

Why this one?
It does not appear in the
book. It does not match
any known experiment
designed by Fisher.

Why is it called ‘Latin’?
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What are Latin squares used for?

Agricultural field trials, with rows and columns corresponding
to actual rows and columns on the ground (possibly the width
of rows is different from the width of columns).

“. . . on any given field agricultural operations, at least for
centuries, have followed one of two directions, which are
usually those of the rows and columns; consequently streaks of
fertility, weed infestation, etc., do, in fact, occur predominantly
in those two directions.”

R. A. Fisher,
letter to H. Jeffreys,

30 May 1938
(selected correspondence edited by J. H. Bennett)

This assumption is dubious for field trials in Australia.
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An experiment on potatoes at Ely in 1932

E B F A C D

B C D E F A

A E C B D F

F D E C A B

D A B F E C

C F A D B E

Treatment A B C D E F
Extra nitrogen 0 0 0 1 1 1
Extra phosphate 0 1 2 0 1 2
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A forestry experiment

Experiment on
a hillside near
Beddgelert Forest,
designed by Fisher
and laid out in
1929

c©The Forestry
Commission
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Other sorts of rows and columns: animals

An experiment on 16 sheep carried out by François Cretté de
Palluel, reported in Annals of Agriculture in 1790. They were
fattened on the given diet, and slaughtered on the date shown.

slaughter Breed
date Ile de France Beauce Champagne Picardy

20 Feb potatoes turnips beets oats & peas
20 Mar turnips beets oats & peas potatoes
20 Apr beets oats & peas potatoes turnips
20 May oats & peas potatoes turnips beets
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Other sorts of rows and columns: plants in pots

An experiment where treatments can be applied to individual
leaves of plants in pots.

plant
height 1 2 3 4

1 A B C D
2 B A D C
3 C D A B
4 D C B A
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Graeco-Latin squares

A B C
C A B
B C A

α β γ

β γ α

γ α β

When the two Latin squares are superposed,
each Latin letter occurs exactly once with each Greek letter.

A α B β C γ

C β A γ B α

B γ C α A β

Euler called such a superposition a ‘Graeco-Latin square’.
The name ‘Latin square’ seems to be a back-formation from
this.

Bailey Latin squares 16/37

Pairs of orthogonal Latin squares

Definition
A pair of Latin squares of order n are orthogonal to each other
if, when they are superposed, each letter of one occurs exactly
once with each letter of the other.

We have just seen a pair of orthogonal Latin squares of order 3.
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Mutually orthogonal Latin squares

Definition
A collection of Latin squares of the same order is
mutually orthogonal if every pair is orthogonal.

Example (n = 4)

Aα1 Bβ2 Cγ3 Dδ4
Bγ4 Aδ3 Dα2 Cβ1
Cδ2 Dγ1 Aβ4 Bα3
Dβ3 Cα4 Bδ1 Aγ2

Theorem
If there exist k mutually orthogonal Latin squares L1, . . . , Lk of
order n, then k ≤ n− 1.
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When is the maximum achieved?

Theorem
If n is a power of a prime number then there exist n− 1 mutually
orthogonal Latin squares of order n.

For example, n = 2, 3, 4, 5, 7, 8, 9, 11, 13, . . . .

The standard construction uses a finite field of order n.

R. A. Fisher and F. Yates: Statistical Tables for Biological,
Agricultural and Medical Research. Edinburgh, Oliver and Boyd,
1938.
This book gives a set of n− 1 MOLS for n = 3, 4, 5, 7, 8 and 9.
The set of order 9 is not made by the usual finite-field
construction, and it is not known how Fisher and Yates
obtained this.
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An industrial experiment using MOLS

L. C. H. Tippett: Applications of statistical methods to the
control of quality in industrial production. Manchester
Statistical Society (1934). (Cited by Fisher, 1935)

A cotton mill has 5 spindles, each made of 4 components.
Why is one spindle producing defective weft?

Period i ii iiii iv v
1 Aα1 Bβ2 Cγ3 Dδ4 Eε5
2 Eδ3 Aε4 Bα5 Cβ1 Dγ2
3 Dβ5 Eγ1 Aδ2 Bε3 Cα4
4 Cε2 Dα3 Eβ4 Aγ5 Bδ1
5 Bγ4 Cδ5 Dε1 Eα2 Aβ3

1st component 2nd component 3rd component 4th component
i–v A–E α–ε 1–5
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How to randomize? I

R. A. Fisher: The arrangement of field experiments. Journal of
the Ministry of Agriculture, 33 (1926), 503–513.

Systematic arrangements in a square . . . have been
used previously for variety trials in, for example,
Ireland and Denmark; but the term ”Latin square”
should not be applied to any such systematic
arrangements. The problem of the Latin Square, from
which the name was borrowed, as formulated by
Euler, consists in the enumeration of every possible
arrangement, subject to the conditions that each row
and each column shall contain one plot of each
variety. Consequently, the term Latin Square should
only be applied to a process of randomization by
which one is selected at random out of the total
number of Latin Squares possible, . . .
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How many different Latin squares of order n are there?

Are these two Latin squares the same?

A B C
C A B
B C A

1 2 3
3 1 2
2 3 1

To answer this question, we will have to insist that all the Latin
squares use the same symbols, such as 1, 2, . . . , n.
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Reduced Latin squares, and equivalence

Definition
A Latin square is reduced if the symbols in the first row and
first column are 1, 2, . . . , n in natural order.

Definition
Latin squares L and M are equivalent if there is
a permutation f of the rows, a permutation g of the columns
and permutation h of the symbols such that

symbol s is in row r and column c of L
⇐⇒

symbol h(s) is in row f (r) and column g(c) of M.

Theorem
If there are m reduced squares in an equivalence class of Latin squares
of order n, then the total number of Latin squares in the equivalence
class is m× n!× (n− 1)!.
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Numbers of reduced Latin squares

non-cyclic equivalence
order cyclic group non-group all classes

2 1 0 0 1 1
3 1 0 0 1 1
4 3 1 0 4 2
5 6 0 50 56 2
6 60 80 9268 9408 22
7 120 0 16941960 16942080 564
8 1260 1500 > 1012 > 1012 1676267
9 6720 840 > 1015 > 1015 > 1012

10 90720 36288 > 1025 > 1025 > 1018

11 36288 0 > 1034 > 1034 > 1026

6: Frolov, 1890; Tarry, 1900; Fisher and Yates, 1934
7: Frolov (badly wrong); Norton, 1939 (omitted one species);
Sade, 1948; Saxena, 1951
8: Wells, 1967 9: Baumel and Rothstein, 1975
10: McKay and Rogoyski, 1995 11: McKay and Wanless, 2005
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How to randomize? II

R. A. Fisher: Statistical Methods for Research Workers. Edinburgh,
Oliver and Boyd, 1925.
F. Yates: The formation of Latin squares for use in field
experiments. Empire Journal of Experimental Agriculture, 1 (1933),
235–244.
R. A. Fisher: The Design of Experiments. Edinburgh, Oliver and
Boyd, 1935.

These three all argued that randomization should ensure
validity by eliminating bias in the estimation of the difference
between the effect of any two treatments, and in the estimation
of the variance of the foregoing estimator. This assumes that
the data analysis allows for the effects of rows and columns.
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Valid randomization

Random choice of a Latin square from a given set L of Latin
squares or order n is valid if

I every cell in the square is equally likely to have each letter
(this ensures lack of bias in the estimation of the difference
between treatment effects)

I every ordered pair of cells in different rows and columns
has probability 1/n(n− 1) of having the same specified
letter,
and probability (n− 2)/n(n− 1)2 of having each ordered
pair of distinct letters
(this ensures lack of bias in the estimation of the variance).
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Some methods of valid randomization

1. Permute rows by a random permutation and permute
columns by an independently chosen random permutation
(a.k.a. randomize rows and columns)—
now the standard method.

2. Use any doubly transitive group in the above,
rather than the whole symmetric group Sn
(Grundy and Healy, 1950; Bailey, 1983).

3. Choose a Latin square at random
from a complete set of mutually orthogonal Latin squares,
and then randomize letters
(Preece, Bailey and Patterson, 1978, following a 1935
remark of Fisher’s when discussing a paper of Neyman).
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Back to pairs of orthogonal Latin squares

Question (Euler, 1782)

For which values of n does there exist a pair of orthogonal
Latin squares of order n?

Theorem
If n is odd, or if n is divisible by 4,
then there is a pair of orthogonal Latin squares of order n.

Proof.

(i) If n is odd, the Latin squares with entries in (i, j) defined
by i + j and i + 2j modulo n are mutually orthogonal.

(ii) If n = 4 or n = 8 such a pair of squares can be constructed
from a finite field.

(iii) If L1 is orthogonal to L2, where L1 and L2 have order n, and
M1 is orthogonal to M2, where M1 and M2 have order m,
then a product construction gives squares L1 ⊗M1
orthogonal to L2 ⊗M2, where these have order nm.
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Euler’s conjecture

Conjecture

If n is even but not divisible by 4,
then there is no pair of orthogonal Latin squares of order n.

This is true when n = 2, because the two letters on the main
diagonal must be the same.

Euler could not find a pair of orthogonal Latin squares of
order 6, or 10, or . . . .
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Euler’s conjecture: order 6

Denés and Keedwell (1974) and Klyve and Stemkovski (2006)
discovered that on 10 August 1842, Heinrich Schumacher, the
astronomer in Altona, Germany, wrote a letter to Gauß, telling
him that his assistant, Thomas Clausen, had proved that there
is no pair of orthogonal Latin squares of order 6.

He said that Clausen divided Latin squares of order 6 into
17 families, and did an exhaustive search within each family.

So had Clausen enumerated the Latin squares of order 6?
This would pre-date Frolov (1890).

No written record of this proof remains.

Theorem (Tarry, 1900)

There is no pair of orthogonal Latin squares of order 6.

Proof.
Exhaustive enumeration by hand, after dividing Latin squares
of order 6 into 17 families.
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The end of the conjecture

Theorem (Bose and Shrikhande, 1959)

There is a pair of orthogonal Latin squares of order 22.

Theorem (Parker, 1959)

If n = (3q− 1)/2 and
q is a power of an odd prime and q− 3 is divisible by 4,
then there is a pair of orthogonal Latin squares of order n.
In particular, there are pairs of orthogonal Latin squares of orders 10,
34, 46 and 70.

Theorem (Bose, Shrikhande and Parker, 1960)

If n is not equal to 2 or 6,
then there exists a pair of orthogonal Latin squares of order n.
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New York Times, 16 April 1959

Major Mathematical Conjecture Propounded 177 Years Ago Is
Disproved

(Copied from The history of latin squares by Lars Døvling
Andersen, 2007)
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Some problems with Fisher’s exposition

Fisher was rather authoritarian about his work.
(Ironically, he may have inadvertently mimicked Karl Pearson.)
He liked to lay down the law before the law was properly
formulated and understood. But

I he rarely wrote down explicit formulae for his
assumptions or methods
(Frank Yates, his junior colleague then long-term successor
at Rothamsted, did this very clearly, apparently with
Fisher’s blessing);

I some of his eye-catching early examples were inconsistent
with his later developments
(the lady tasting tea, and comments on an experiment of
Darwin’s (both in Design of Experiments, 1935)
led to the randomization test,
which he explicitly recanted in the 7th edition in 1960).
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Explicit assumptions

Let Yω(i) be the response on plot ω (ω = 1, . . . , N)
when treatment i is applied to ω.
Fisher’s model is Yω(i) = τi + Zω, where

I τi depends only on treatment i,
and we want to estimate differences like τ1 − τ2;

I Zω depends only on plot ω, and can include effects of rows
and columns as well as other variability.

The additive model allows conclusions from the data analysis
to be extrapolated to other plots outwith the experiment.
The joint distribution of Z1, . . . , ZN is partly determined by the
method of randomization.
Neyman (1923, in Polish) does not assume a model for Yω(i),
and seeks to estimate differences like

1
N

[
N

∑
ω=1

Yω(1)−
N

∑
ω=1

Yω(2)

]
.

Conclusions cannot be extrapolated.
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The Fisher–Neyman row

Neyman read a paper on Statistical problems in agricultural
experimentation to the Royal Statistical Society in 1935.
In this, he claimed to have proved that any experiment
designed as a Latin square gives biased results
(in the sense that the expectation of the estimator is not equal to
the true value being estimated).
Fisher responded furiously in the official discussion, but
without pointing out the different underlying assumptions.
Neyman moved to the USA, where Wilk and Kempthorne
(ex-Rothamsted) developed his argument further in 1957.
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IMS Summer Institute

Later in 1957, Oscar Kempthorne chaired a six-week IMS
Summer Institute on the topic at Boulder, Colorado.
David Cox attended this; as a result, he published a paper in
1958 explaining the misunderstanding and arguing that Fisher
had been correct to state that there is no bias in a conventional
Latin-square experiment. He also explained the additive
assumption very clearly in his 1958 book Planning of
Experiments.
A few years ago, Cox told me that he and Kempthorne had had
really friendly discussions during the workshop.
In later years, Kempthorne (who could be as rude as Fisher in
writing but as nice as pie in person) also used the additive
model. In a 1975 paper he went so far as to say that Neyman’s
null hypothesis (that ∑ω Yω(i) is the same for every treatment i)
“is not scientifically relevant”.
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So where are we now on this issue?

In 2017, Peng Ding published a paper in Statistical Science.
He claimed that Fisher’s approach was to test whether
Yω(i) = Yω(j) for all i and j, even though there is no such
notation in Fisher’s work.
He rederived a paradox noted by George Barnard in 1955.
He ignored the IMS Summer Institute and the later papers by
Kempthorne.

I was invited to contribute to the written discussion, and did so
gladly and forthrightly.

Deng’s response concluded

. . . as an assistant professor in the department founded by
Neyman, I feel obligated to use it to continue the Neyman
tradition.
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