Latin squares: Some history, with an emphasis on their use in designed experiments

R. A. Bailey
University of St Andrews
QMUL (emerita)

British Mathematical Colloquium, St Andrews, June 2018

Abstract	What is a Latin square?
In the 1920s, R. A. Fisher, at Rothamsted Experimental Station in Harpenden, recommended Latin squares for agricultural crop experiments. At about the same time, Jerzy Neyman developed the same idea during his doctoral study at the University of Warsaw. However, there is evidence of their much earlier use in experiments.	
Euler had made his famous conjecture about Graeco-Latin squares in 1782. There was a spectacular refutation in 1960. I shall say something about the different uses of Latin squares in designed experiments. This needs methods of construction, of counting, and of randomization. Fisher and Neyman had a famous falling out over Latin squares in 1935 when Neyman proved that use of Latin squares in experiments gives biased results. A six-week international workshop in Boulder, Colorado in 1957 resolved this, but the misunderstanding surfaced again in a Statistics paper published in 2017. Definition Let n be a positive integer. A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.	The symbols may be letters, numbers, colours, \ldots

A stained glass window in Caius College, Cambridge

Stained glass window; book cover; INI logo	Latin squares on book covers	
THE DESIGN OF EXPERIMENTS R.A.FISHERFR.S	THE DESIGN OF EXPERIMENTS R.A.FISHERF.R.S. 6th edition	DESIGN OF EXPERIMENTS R.A.FISHERFRS 7th edition

An industrial experiment using MOLS

L. C. H. Tippett: Applications of statistical methods to the control of quality in industrial production. Manchester Statistical Society (1934). (Cited by Fisher, 1935)

A cotton mill has 5 spindles, each made of 4 components. Why is one spindle producing defective weft?

Period	i	ii	iiii	iv	v
1	$A \alpha 1$	$B \beta 2$	$C \gamma 3$	$D \delta 4$	$E \varepsilon 5$
2	$E \delta 3$	$A \varepsilon 4$	$B \alpha 5$	$C \beta 1$	$D \gamma 2$
3	$D \beta 5$	$E \gamma 1$	$A \delta 2$	$B \varepsilon 3$	$C \alpha 4$
4	$C \varepsilon 2$	$D \alpha 3$	$E \beta 4$	$A \gamma 5$	$B \delta 1$
5	$B \gamma 4$	$C \delta 5$	$D \varepsilon 1$	$E \alpha 2$	$A \beta 3$

How to randomize? I

R. A. Fisher: The arrangement of field experiments. Journal of the Ministry of Agriculture, 33 (1926), 503-513.

Systematic arrangements in a square . . . have been used previously for variety trials in, for example, Ireland and Denmark; but the term "Latin square" should not be applied to any such systematic arrangements. The problem of the Latin Square, from which the name was borrowed, as formulated by Euler, consists in the enumeration of every possible arrangement, subject to the conditions that each row and each column shall contain one plot of each variety. Consequently, the term Latin Square should only be applied to a process of randomization by which one is selected at random out of the total number of Latin Squares possible, ...

Euler's conjecture: order 6

Denés and Keedwell (1974) and Klyve and Stemkovski (2006) discovered that on 10 August 1842, Heinrich Schumacher, the astronomer in Altona, Germany, wrote a letter to Gauß, telling him that his assistant, Thomas Clausen, had proved that there is no pair of orthogonal Latin squares of order 6.
He said that Clausen divided Latin squares of order 6 into
17 families, and did an exhaustive search within each family.
So had Clausen enumerated the Latin squares of order 6? This would pre-date Frolov (1890).
No written record of this proof remains.
Theorem (Tarry, 1900)
There is no pair of orthogonal Latin squares of order 6 .
Proof.
Exhaustive enumeration by hand, after dividing Latin squares of order 6 into 17 families.

The end of the conjecture

Theorem (Bose and Shrikhande, 1959)
There is a pair of orthogonal Latin squares of order 22.
Theorem (Parker, 1959)
If $n=(3 q-1) / 2$ and
q is a power of an odd prime and $q-3$ is divisible by 4 , then there is a pair of orthogonal Latin squares of order n. In particular, there are pairs of orthogonal Latin squares of orders 10 , 34, 46 and 70.

Theorem (Bose, Shrikhande and Parker, 1960)
If n is not equal to 2 or 6 ,
then there exists a pair of orthogonal Latin squares of order n.

New York Times, 16 April 1959

Major Mathematical Conjecture Propounded 177 Years Ago Is Disproved

(Copied from The history of latin squares by Lars Døvling Andersen, 2007)

Some problems with Fisher's exposition

Fisher was rather authoritarian about his work.
(Ironically, he may have inadvertently mimicked Karl Pearson.) He liked to lay down the law before the law was properly formulated and understood. But

- he rarely wrote down explicit formulae for his assumptions or methods (Frank Yates, his junior colleague then long-term successor at Rothamsted, did this very clearly, apparently with Fisher's blessing);
- some of his eye-catching early examples were inconsistent with his later developments
(the lady tasting tea, and comments on an experiment of Darwin's (both in Design of Experiments, 1935) led to the randomization test, which he explicitly recanted in the 7th edition in 1960).

Explicit assumptions

Let $Y_{\omega}(i)$ be the response on plot $\omega(\omega=1, \ldots, N)$
when treatment i is applied to ω.
Fisher's model is $\quad Y_{\omega}(i)=\tau_{i}+Z_{\omega}, \quad$ where

- τ_{i} depends only on treatment i,
and we want to estimate differences like $\tau_{1}-\tau_{2}$;
- Z_{ω} depends only on plot ω, and can include effects of rows and columns as well as other variability.
The additive model allows conclusions from the data analysis to be extrapolated to other plots outwith the experiment. The joint distribution of Z_{1}, \ldots, Z_{N} is partly determined by the method of randomization.
Neyman (1923, in Polish) does not assume a model for $Y_{\omega}(i)$, and seeks to estimate differences like

$$
\frac{1}{N}\left[\sum_{\omega=1}^{N} Y_{\omega}(1)-\sum_{\omega=1}^{N} Y_{\omega}(2)\right]
$$

Conclusions cannot be extrapolated.

The Fisher-Neyman row

Neyman read a paper on Statistical problems in agricultural experimentation to the Royal Statistical Society in 1935. In this, he claimed to have proved that any experiment designed as a Latin square gives biased results (in the sense that the expectation of the estimator is not equal to the true value being estimated).
Fisher responded furiously in the official discussion, but without pointing out the different underlying assumptions. Neyman moved to the USA, where Wilk and Kempthorne (ex-Rothamsted) developed his argument further in 1957.

IMS Summer Institute

Later in 1957, Oscar Kempthorne chaired a six-week IMS Summer Institute on the topic at Boulder, Colorado.
David Cox attended this; as a result, he published a paper in 1958 explaining the misunderstanding and arguing that Fisher had been correct to state that there is no bias in a conventional Latin-square experiment. He also explained the additive assumption very clearly in his 1958 book Planning of Experiments.
A few years ago, Cox told me that he and Kempthorne had had really friendly discussions during the workshop.
In later years, Kempthorne (who could be as rude as Fisher in writing but as nice as pie in person) also used the additive model. In a 1975 paper he went so far as to say that Neyman's null hypothesis (that $\sum_{\omega} Y_{\omega}(i)$ is the same for every treatment i) "is not scientifically relevant".

So where are we now on this issue?

In 2017, Peng Ding published a paper in Statistical Science. He claimed that Fisher's approach was to test whether $Y_{\omega}(i)=Y_{\omega}(j)$ for all i and j, even though there is no such notation in Fisher's work.
He rederived a paradox noted by George Barnard in 1955.
He ignored the IMS Summer Institute and the later papers by Kempthorne.
I was invited to contribute to the written discussion, and did so gladly and forthrightly.
Deng's response concluded
\ldots as an assistant professor in the department founded by
Neyman, I feel obligated to use it to continue the Neyman tradition.

