Some history of Latin squares in experiments

R. A. Bailey

University of St Andrews
QMUL (emerita)

In the 1920s,
R. A. Fisher recommended Latin squares for crop experiments. However, there is evidence of their much earlier use in experiments.

They have led to interesting special cases, arguments, counter-intuitive results, and a spectacular solution to an old problem.

What are Latin squares used for?

Agricultural field trials, with rows and columns corresponding to actual rows and columns on the ground (possibly the width of rows is different from the width of columns).
".. on any given field agricultural operations, at least for centuries, have followed one of two directions, which are usually those of the rows and columns; consequently streaks of fertility, weed infestation, etc., do, in fact, occur predominantly in those two directions."
R. A. Fisher, letter to H. Jeffreys,

30 May 1938
(selected correspondence edited by J. H. Bennett)

This assumption is dubious for field trials in Australia.

An experiment on potatoes at Ely in 1932

E	B	F	A	C	D
B	C	D	E	F	A
A	E	C	B	D	F
F	D	E	C	A	B
D	A	B	F	E	C
C	F	A	D	B	E

Treatment	A	B	C	D	E	F
Extra nitrogen	0	0	0	1	1	1
Extra phosphate	0	1	2	0	1	2

A forestry experiment

Experiment
on a hillside near Beddgelert Forest, designed by Fisher and laid out in 1929
© The Forestry Commission

Other sorts of rows and columns: animals

An experiment on 16 sheep carried out by François Cretté de Palluel, reported in Annals of Agriculture in 1790. They were fattened on the given diet, and slaughtered on the date shown.

	Breed			
date	Ile de France	Beauce	Champagne	Picardy
20 Feb	potatoes	turnips	beets	oats \& peas
20 Mar	turnips	beets	oats \& peas	potatoes
20 Apr	beets	oats \& peas	potatoes	turnips
20 May	oats \& peas	potatoes	turnips	beets

Other sorts of rows and columns: plants in pots

An experiment where treatments can be applied to individual leaves of plants in pots.

	plant			
height	1	2	3	4
1	A	B	C	D
2	B	A	D	C
3	C	D	A	B
4	D	C	B	A

\mid Graeco-Latin squares

A	B	C				
C	A	B				
B	C	A		α	β	γ
:---:	:---:	:---:				
β	γ	α				
γ	α	β				

When the two Latin squares are superposed, each Latin letter occurs exactly once with each Greek letter.

A	α	B	β	C	γ
C	β	A	γ	B	α
B	γ	C	α	A	β

Euler called such a superposition a 'Graeco-Latin square'. The name 'Latin square' seems to be a back-formation from this.

Pairs of orthogonal Latin squares

Definition
A pair of Latin squares of order n are orthogonal to each other if, when they are superposed, each letter of one occurs exactly once with each letter of the other.

We have just seen a pair of orthogonal Latin squares of order 3.

Mutually orthogonal Latin squares

Definition
A collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal.

Example $(n=4)$

$A \alpha 1$	$B \beta 2$	$C \gamma 3$	$D \delta 4$
$B \gamma 4$	$A \delta 3$	$D \alpha 2$	$C \beta 1$
$C \delta 2$	$D \gamma 1$	$A \beta 4$	$B \alpha 3$
$D \beta 3$	$C \alpha 4$	$B \delta 1$	$A \gamma 2$

Theorem

If there exist k mutually orthogonal Latin squares L_{1}, \ldots, L_{k} of order n, then $k \leq n-1$.

When is the maximum achieved?

Theorem
If n is a power of a prime number then there exist $n-1$ mutually orthogonal Latin squares of order n.

For example, $n=2,3,4,5,7,8,9,11,13, \ldots$.
The standard construction uses a finite field of order n.
R. A. Fisher and F. Yates: Statistical Tables for Biological,

Agricultural and Medical Research. Edinburgh, Oliver and Boyd, 1938.

This book gives a set of $n-1$ MOLS for $n=3,4,5,7,8$ and 9 .
The set of order 9 is not made by the usual finite-field
construction, and it is not known how Fisher and Yates obtained this.

An industrial experiment using MOLS

L. C. H. Tippett: Applications of statistical methods to the control of quality in industrial production. Manchester Statistical Society (1934). (Cited by Fisher, 1935)

A cotton mill has 5 spindles, each made of 4 components. Why is one spindle producing defective weft?

Period	i	ii	iiii	iv	v
1	$A \alpha 1$	$B \beta 2$	$C \gamma 3$	$D \delta 4$	$E \varepsilon 5$
2	$E \delta 3$	$A \varepsilon 4$	$B \alpha 5$	$C \beta 1$	$D \gamma 2$
3	$D \beta 5$	$E \gamma 1$	$A \delta 2$	$B \varepsilon 3$	$C \alpha 4$
4	$C \varepsilon 2$	$D \alpha 3$	$E \beta 4$	$A \gamma 5$	$B \delta 1$
5	$B \gamma 4$	$C \delta 5$	$D \varepsilon 1$	$E \alpha 2$	$A \beta 3$

1 st component 2 nd component 3 rd component 4 th component
i-v $A-E \quad \alpha-\varepsilon \quad 1-5$

How to randomize? |

R. A. Fisher: The arrangement of field experiments. Journal of the Ministry of Agriculture, 33 (1926), 503-513.

Systematic arrangements in a square ... have been used previously for variety trials in, for example, Ireland and Denmark; but the term "Latin square" should not be applied to any such systematic arrangements. The problem of the Latin Square, from which the name was borrowed, as formulated by Euler, consists in the enumeration of every possible arrangement, subject to the conditions that each row and each column shall contain one plot of each variety. Consequently, the term Latin Square should only be applied to a process of randomization by which one is selected at random out of the total number of Latin Squares possible, ...

MacMahon's counting	Correction
"... problem of the Latin square. I have given the mathematical solution and you will find it in my Combinatory Analysis, Vol. 1, p. 250. $\begin{array}{rcccr}\text { For } n=2, & \text { no. } & \text { of } & \text { arrangements is } & 2 \\ 3, & \prime \prime & " & " & 12 \\ 4, & " & " & " & 576 \\ 5, & " & " & " & 149760\end{array}$ and I have not calculated the numbers any further." P. A. MacMahon letter to R. A. Fisher, 30 July 1924 (selected correspondence edited by J. H. Bennett)	Fisher divided by $n!\times(n-1)!$ to obtain the number of reduced Latin squares, which he pencilled in. By September 1924 they had agreed that the number of reduced Latin squares of order 5 was 56 , not 52 . Euler had already published this result in 1782; and so had Cayley in a 1890 paper called 'On Latin squares'.

Numbers of reduced Latin squares						How to randomize? II R. A. Fisher: Statistical Oliver and Boyd, 1925. F. Yates: The formation experiments. Empire Jou 235-244. R. A. Fisher: The Design Boyd, 1935. These three all argued validity by eliminating between the effect of any of the variance of the fo the data analysis allow
order	cyclic	non-cyclic group	non-group	all	uivalence classes	
2	1	0	0	1	1	
3	1	0	0	1	1	
4	3	1	0	4	2	
5	6	0	50	56	2	
6	60	80	9268	9408	22	
7	120	0	16941960	16942080	564	
8	1260	1500	$>10^{12}$	$>10^{12}$	1676267	
9	6720	840	$>10^{15}$	$>10^{15}$	$>10^{12}$	
10	90720	36288	$>10^{25}$	$>10^{25}$	$>10^{18}$	
6. 11	36288	0	$\xrightarrow{>} 10^{34}$	$>10^{34}$	$>10^{26}$	
6: Frolov, 1890; Tarry, 1900; Fisher and Yates, 1934 7: Frolov (wrong); Norton, 1939 (incomplete); Sade, 1948; Saxena, 1951 8: Wells, 1967 9: Baumel and Rothstein, 1975 10: McKay and Rogoyski, 1995 11: McKay and Wanless, 2005						

Valid randomization	Some methods of valid randomization
Random choice of a Latin square from a given set \mathcal{L} of Latin squares or order n is valid if - every cell in the square is equally likely to have each letter (this ensures lack of bias in the estimation of the difference between treatment effects) - every ordered pair of cells in different rows and columns has probability $1 / n(n-1)$ of having the same specified letter, and probability $(n-2) / n(n-1)^{2}$ of having each ordered pair of distinct letters (this ensures lack of bias in the estimation of the variance).	1. Permute rows by a random permutation and permute columns by an independently chosen random permutation (a.k.a. randomize rows and columns)now the standard method. 2. Use any doubly transitive group in the above, rather than the whole symmetric group S_{n} (Grundy and Healy, 1950; Bailey, 1983). 3. Choose a Latin square at random from a complete set of mutually orthogonal Latin squares, and then randomize letters (Preece, Bailey and Patterson, 1978, following a 1935 remark of Fisher's when discussing a paper of Neyman).

Gerechte designs
Behrens introduced 'gerechte' designs in 1956

A	B	C	E	D	F
D	E	F	B	C	A
B	C	E	F	A	D
F	D	A	C	B	E
C	F	D	A	E	B
E	A	B	D	F	C

For validity, data analysis must allow for small rectangles, as well as rows and columns.
Randomize the 3 pairs of rows;
randomize the 2 rows within each pair; randomize the 2 triples of columns; randomize the 3 columns within each triple. But then validity requires data analysis to allow for small rows and small columns, so the patterns in the small rows and small columns are a relevant part of the design.

Incomplete blocks

A block is a homogeneous group of experimental units.
In an agricultural experiment, it might be a row of plots corresponding to a line of ploughing.
In an industrial experiment, it might be a time period.
If the size of the blocks is less than the number of treatments, we have an incomplete-block design.
How should we build incomplete-block designs?

Lattice designs for n^{2} treatments in blocks of size n

F. Yates: A new method of arranging variety trials involving a large number of varieties. Journal of Agricultural Science, 26 (1936), 424-455.
Treatments

1	2	3				
4	5	6				
7	8	9	\quad	A	B	C
:---	:---	:---				
C	A	B				
B	C	A	\quad	α	β	γ
:---	:---	:---				
β	γ	α				
γ	α	β				

A design with 6 blocks of size 3 (shown as columns), or 9 blocks of size 3 , or 12 blocks of size 3 .

1	4	7	1	2	3	1	2	3	1	2	3
2	5	8	4	5	6	5	6	4	6	4	5
3	6	9	7	8	9	9	7	8	8	9	7

The last design is balanced because every pair of treatments occur together in the same number of blocks.

Now add four more treatments

1	4	7	1	2	3	1	2	3	1	2	3	10
2	5	8	4	5	6	5	6	4	6	4	5	11
3	6	9	7	8	9	9	7	8	8	9	7	12
10	10	10	11	11	11	12	12	12	13	13	13	13

This design is also balanced
Balanced designs are optimal in the sense of minimizing variance (Kshirsagar, 1958).

So are all these lattice designs (Cheng and Bailey, 1991).
Optimality was not really defined until the 1950s.
The balanced designs are an affine plane and a projective plane. Yates did not know anything about such geometries in 1936.
A hypothetical cheese-tasting experiment

Order	1	2	3	4	5	6
1	E	B	F	A	C	D
2	B	C	D	E	F	A
3	A	E	C	B	D	F
4	F	D	E	C	A	B
5	D	A	B	F	E	C
6	C	F	A	D	B	E

What happens if cheese E leaves a nasty after-taste?
Is this fair to cheese B ?

Column-complete Latin squares

Definition
A Latin square is column-complete if each treatment is immediately followed, in the same column, by each other treatment exactly once.
E. J. Williams: Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research, Series A, Physical Sciences, 2 (1949), 149-168.

0	1	2	3	4	5
1	2	3	4	5	0
5	0	1	2	3	4
2	3	4	5	0	1
4	5	0	1	2	3
3	4	5	0	1	2

Williams gave a method of construction for all even orders. His squares are still widely used in tasting experiments and in trials of new drugs to alleviate symptoms of chronic conditions.

Complete Latin squares

A Latin square is complete if it is both row-complete and column-complete.

Quasi-complete Latin squares

For some experiments on the ground, an East neighbour is as bad as a West neighbour, and a South neighbour is as bad as a North neighbour.
Definition
A Latin square is quasi-complete if each treatment has each other treatment next to it in the same row twice, and next to it in the same column twice, in either direction.

0	1	4	2	3
1	2	0	3	4
3	4	2	0	1
4	0	3	1	2
2	3	1	4	0

Freeman (1979) defined these. Freeman (1981) gave the results of a computer enumeration for small orders. Bailey (1984) gave a method of construction for all orders.

A randomization paradox

We can randomize a quasi-complete Latin square of order n by choosing a square at random from a set \mathcal{L} of quasi-complete Latin squares of order n with first row in natural order and then randomizing treatments.

When $n=7$, there is a set \mathcal{L}_{1} of 864 such quasi-complete Latin squares that makes this randomization valid.
The set \mathcal{L}_{2} of all known such quasi-complete Latin squares of order 7 contains 896 squares; random choice from this larger set is not valid.

Back to pairs of orthogonal Latin squares

Question (Euler, 1782)
For which values of n does there exist a pair of orthogonal Latin squares of order n ?
Theorem
If n is odd, or if n is divisible by 4 ,
then there is a pair of orthogonal Latin squares of order n.
Proof.
(i) If n is odd, the Latin squares with entries in (i, j) defined by $i+j$ and $i+2 j$ modulo n are mutually orthogonal.
(ii) If $n=4$ or $n=8$ such a pair of squares can be constructed from a finite field.
(iii) If L_{1} is orthogonal to L_{2}, where L_{1} and L_{2} have order n, and M_{1} is orthogonal to M_{2}, where M_{1} and M_{2} have order m, then a product construction gives squares $L_{1} \otimes M_{1}$ orthogonal to $L_{2} \otimes M_{2}$, where these have order $n m$.

Euler's conjecture

Euler's conjecture: order 6
On 10 August 1842, Heinrich Schumacher, the astronomer in Altona, wrote a letter to Gauß, telling him that his assistant, Thomas Clausen, had proved that there is no pair of orthogonal Latin squares of order 6 .
He said that Clausen divided Latin squares of order 6 into 17 families, and did an exhaustive search within each family.

So had Clausen enumerated the Latin squares of order 6? This would pre-date Frolov (1890).
No written record of this proof remains.
Theorem (Tarry, 1900)
There is no pair of orthogonal Latin squares of order 6.
Proof.
Exhaustive enumeration by hand, after dividing Latin squares of order 6 into 17 families.

The end of the conjecture

Theorem (Bose and Shrikhande, 1959)
There is a pair of orthogonal Latin squares of order 22.

Theorem (Parker, 1959)
If $n=(3 q-1) / 2$ and
q is a power of an odd prime and $q-3$ is divisible by 4 ,
then there is a pair of orthogonal Latin squares of order n.
In particular, there are pairs of orthogonal Latin squares of orders 10,
34, 46 and 70.
Theorem (Bose, Shrikhande and Parker, 1960)
If n is not equal to 2 or 6 ,
then there exists a pair of orthogonal Latin squares of order n.

