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Variety Testing

In breeding trials of new varieties, typically there is very little
seed of each of the new varieties.

Traditionally, an experiment has one plot for each new variety
and several plots for a well-established “control”: for example,
30 new varieties on one plot each and one control on 8 plots.

In the last 10 years, Cullis and colleagues in Australia
(and independently Bueno and Gilmour)
have suggested replacing many occurrences of the the control
by double replicates of a small number of new varieties: for
example, 24 new varieties with one plot each, 6 new varieties
with two plots each, and the control on two further plots.

This is an improvement if there are no blocks.
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How do we allow for variation between the plots?

“. . . on any given field agricultural operations, at least for
centuries, have followed one of two directions, which are
usually those of the rows and columns; consequently streaks of
fertility, weed infestation, etc., do, in fact, occur predominantly
in those two directions.”

R. A. Fisher,
letter to H. Jeffreys,

30 May 1938
(selected correspondence edited by J. H. Bennett)

(This assumption is dubious for field trials in Australia.)

If field operations have been primarily in one direction for a
long time, then it is reasonable to divide the fields into blocks
whose length runs along that direction.
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Blocking in the second phase of a variety trial

The milling phase of a wheat variety trial has 224 varieties to be
compared. Only 10 can be milled in any one day. The trial can
take place over 28 days, so there are 28 blocks of size 10.

There are only 280− 224 = 56 experimental units “spare” for
replication. How should these be allocated?

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication

One extreme: 2 “controls” (among the test varieties) in every
block.
Even more extreme: 2 uninteresting controls in each block.
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Two possible designs for 224 varieties in 28 blocks of 10

28 blocks



2 units 8 units

...
...

2 controls 222 varieties
in every block 220 single replication

28 blocks



4 units 6 units

...
...

56 varieties 168 varieties
all replicated twice all single replication
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The problem

We are given b blocks of size k. We are given v varieties.
Assume that

average replication = r̄ =
bk
v
≤ 2.

How should we allocate varieties to blocks?
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A-optimal designs

We measure the response Y on the plot
with variety i in block D, and assume that

Y = τi + βD + random noise,

where the random noise is N(0, σ2), independently for each
plot.

Put

Vij σ2 =
variance of the best linear unbiased estimator
for τi − τj;

VT =
v−1

∑
i=1

v

∑
j=i+1

Vij ∝ sum of variances of variety differences.

A block design is A-optimal if it minimizes VT.
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Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;

a queen-bee if it occurs in every block;
a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?

8/47



Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;
a queen-bee if it occurs in every block;

a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?

8/47



Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;
a queen-bee if it occurs in every block;

a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?

8/47



Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;
a queen-bee if it occurs in every block;

a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?

8/47



Silly names just for this talk

Definition
Call a variety a

a drone if it has replication 1;
a queen-bee if it occurs in every block;

a worker otherwise.

Is it better to put all the drones into one block (or a few blocks),
or are they better distributed equally among all the blocks?

8/47



How should we distribute the drones?

Block A Block B
n drones m drones

If we move all the drones in block B into block A
then we reduce nm variances from 2 + VAB to 2,
where VAB is the variance of the estimator of the difference
between the block effects of A and B in the design obtained by
ignoring the drones.

Then we have to remove m non-drones from block A,
and this increases the variances between these n + m drones
and the remaining v− n−m varieties. This more than
compensates for the original reduction in variance.
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From now on, distribute drones as equally as possible

b blocks



k′ plots n plots

...
...

v′ varieties bn drones
all single replication

whole design ∆

Whole design ∆ has v treatments in b blocks of size k = k′ + n;
the subdesign Γ has v′ core varieties in b blocks of size k′.
(The core varieties may include extra drones.)

n ≥ n0 =

⌊
2v− bk

b

⌋
k′ ≤ k0 = k− n0
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Sum of the pairwise variances

Theorem (cf. Herzberg and Jarrett, 2007)

If there are n drones in each block of ∆,
and the core design Γ has v′ varieties in b blocks of size k′

then the sum of the variances of variety differences in ∆

= VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ),
where

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one treatment and one block in Γ.
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Sum of variances in whole design if Γ is equi-replicate

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one treatment and one block in Γ.

If Γ is equi-replicate with replication r′ then

k′

b
VB(Γ)− b =

r′

v′
VT(Γ)− v′;

VBT(Γ) =
2b
v′

VT(Γ) +
v′

k′
(b− v′ − 1),

so VB(Γ) and VBT(Γ) are both increasing functions of VT(Γ).

Consequence

For a given choice of k′, use the core design Γ which minimizes VT(Γ).
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Sum of variances in whole design if there are many drones

VT(∆) = bn(bn + v′ − 1) + VT(Γ) + nVBT(Γ) + n2VB(Γ)

VT(Γ) = the sum of the variances of variety differences in Γ
VB(Γ) = the sum of the variances of block differences in Γ

VBT(Γ) = the sum of the variances of sums of
one treatment and one block in Γ.

Consequence

If v is large then n is large, so we need to focus on reducing VB(Γ),
so it may be best to increase the number of drones
and decrease k′ (the size of blocks in the core design Γ),
so that average replication within Γ is more than 2.
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An example of this non-intuitive result

If there are 4(2 + n) varieties in 4 blocks of size 4 + n,
the design on the left is A-better than the design on the right
if and only if n < 50.

1 2 3 4 n drones

1 2 5 6 n drones

3 6 7 8 n drones

4 5 7 8 n drones

1 2 3 n + 1 drones

1 2 4 n + 1 drones

1 3 4 n + 1 drones

2 3 4 n + 1 drones
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A definite result

Theorem
Suppose that we are given b blocks of size k, and v varieties.
For i = 1, 2, let design ∆i have core subdesign Γi with block size ki.
If Γ1 is the dual of a balanced incomplete block design and k1 > k2
then ∆2 is worse than ∆1 on the A criterion,
no matter how big v is.
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An example of the good result

If there are 4n + 6 varieties in 4 blocks of size 3 + n,
the design on the left is A-better than the design on the right,
for all values of n.

1 2 3 n drones

1 4 5 n drones

2 4 6 n drones

3 5 6 n drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones

1 2 n + 1 drones
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Strategy

Given b, v and k, how do we find an A-optimal design
for v varieties in b blocks of size k when

bk
2
≤ v ≤ b(k− 1) + 1?

Average replication ≤ 2 Maximum v for estimability

Case 1. b = 2 or b = 3 (very small b).
Case 2. v = b(k− 1) + 1 or v = b(k− 1) (very large v).
Case 3. k0 ≥ b− 1.
Case 4. 2 < k0 < b− 1 (small k0 but not Case 2).

k0 = k−
⌊

2v− bk
b

⌋
= biggest space per block for non-drones.
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Case 1. Only 2 blocks, of size k

Morgan and Jin (2007) showed that the A-optimal designs are
those with 2n drones and q queen bees,
where n = n0 = v− k and q = k′ = k0 = k− n0 = 2k− v.

1 2 3 4 . . . q A1 A2 A3 . . . An

1 2 3 4 . . . q B1 B2 B3 . . . Bn
queens drones
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Case 1 continued. 3 blocks of size k

Using the nice theorem, RAB has shown that
the A-optimal designs are as follows when v is divisible by 3
(and presumably small changes deal with the other cases).
There are 3w workers and 3n drones,
where 3w = 3k− v and n = n0 = k− 2w and k′ = k0 = 2w.

1 2 4 5 . . . 3w− 2 3w− 1 A1 A2 A3 . . . An

1 3 4 6 . . . 3w− 2 3w B1 B2 B3 . . . Bn

2 3 5 6 . . . 3w− 1 3w C1 C2 C3 . . . Cn

w copies of design using
all pairs from 3 drones
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Case 2. v = b(k− 1) + 1

This is the maximum number of varieties that can be tested in
b blocks of size k with all comparisons estimable.

Mandal, Shah and Sinha (1991), for k = 2,
and Bailey and Cameron (2013), for general block size,
showed that, no matter how many blocks there are,
the A-optimal design has the following form.

1 A1 A2 A3 . . . Ak−1

1 B1 B2 B3 . . . Bk−1

1 C1 C2 C3 . . . Ck−1

1 D1 D2 D3 . . . Dk−1

1 E1 E2 E3 . . . Ek−1

1 queen v− 1 drones
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Case 2 continued. v = b(k− 1)

The A-optimal designs were found for all cases
by Krafft and Schaefer (1997).

small k and b

increase k if b ≥ 5 then increase b

1 2 A1

2 3 B1

3 4 C1

4 5 D1

5 6 E1

6 1 F1
chain

1 2 A1 A2

2 3 B1 B2

3 1 C1 C2

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

smaller
chain

1 2 A1 A2

1 2 B1 B2

1 C1 C2 C3

1 D1 D2 D3

1 E1 E2 E3

1 F1 F2 F3

1 G1 G2 G3

1 queen

Youden and Connor (1953) had recommended chain designs.
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small k and b increase k if b ≥ 5 then increase b

1 2 A1

2 3 B1

3 4 C1

4 5 D1

5 6 E1

6 1 F1
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Case 3. k ≥ k0 ≥ b− 1

For simplicity, assume that b divides 2v, so that

n0 =
2v− bk

b
= minimum number of drones per block.

Then
b(2k− b + 1)

2
≥ v ≥ bk

2
≥ b(b− 1)

2
.

Let Γ0 be the design for b(b− 1)/2 varieties
replicated twice in b blocks of size b− 1
in such a way that
there is one variety in common to each pair of blocks.
This is A-optimal for these numbers.
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Case 3 continued. k ≥ k0 ≥ b− 1

If k0 = s(b− 1) then take Γ to be s copies of Γ0.
This is always A-optimal.
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Case 3 continued. k ≥ k0 ≥ b− 1

If k0 > b− 1 but k0 is not a multiple of b− 1,
then the following strategy seems likely to be good
(but it is not A-optimal when b = k0 = 4 and v is very large).

n0 = minimal number of drones per block.

Construction Method

1. put n0 drones in each block;
2. put in one copy of Γ0;
3. put in as many further copies of Γ0 as possible;
4. in any remaining space,

use a good design for workers with replication 2
(so long as there is at least one copy of Γ0,
it probably doesn’t make much difference which one is used).
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

60 varieties: all workers (n0 = 0)

1 2 3 4 5 6 7 29 30 31 32 33 34 35 57

1 8 9 10 11 12 13 29 36 37 38 39 40 41 57

2 8 14 15 16 17 18 30 36 42 43 44 45 46 58

3 9 14 19 20 21 22 31 37 42 47 48 49 50 58

4 10 15 19 23 24 25 32 38 43 47 51 52 53 59

5 11 16 20 23 26 27 33 39 44 48 51 54 55 59

6 12 17 21 24 26 28 34 40 45 49 52 54 56 60

7 13 18 22 25 27 28 35 41 46 50 53 55 56 60
one copy of Γ0 another copy of Γ0
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

76 varieties: 44 workers, 32 drones (n0 = 4)

1 2 3 4 5 6 7 29 30 31 32 A1 A2 A3 A4

1 8 9 10 11 12 13 33 34 35 36 B1 B2 B3 B4

2 8 14 15 16 17 18 37 38 39 40 C1 C2 C3 C4

3 9 14 19 20 21 22 41 42 43 44 D1 D2 D3 D4

4 10 15 19 23 24 25 29 33 37 41 E1 E2 E3 E4

5 11 16 20 23 26 27 30 34 38 42 F1 F2 F3 F4

6 12 17 21 24 26 28 31 35 39 43 G1 G2 G3 G4

7 13 18 22 25 27 28 32 36 40 44 H1 H2 H3 H4
Γ0 16 workers drones

replication 2
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Case 3. Example: b = 8 and k = 15 (so 60 ≤ v ≤ 92)

92 varieties: 28 workers, 64 drones (n0 = 8)

1 2 3 4 5 6 7 A1 A2 A3 A4 A5 A6 A7 A8

1 8 9 10 11 12 13 B1 B2 B3 B4 B5 B6 B7 B8

2 8 14 15 16 17 18 C1 C2 C3 C4 C5 C6 C7 C8

3 9 14 19 20 21 22 D1 D2 D3 D4 D5 D6 D7 D8

4 10 15 19 23 24 25 E1 E2 E3 E4 E5 E6 E7 E8

5 11 16 20 23 26 27 F1 F2 F3 F4 F5 F6 F7 F8

6 12 17 21 24 26 28 G1 G2 G3 G4 G5 G6 G7 G8

7 13 18 22 25 27 28 H1 H2 H3 H4 H5 H6 H7 H8

Γ0 drones
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Case 4. 2 < k0 < b− 1

For various values of ki ≤ k0,
find the best core subdesign Γi for v′i varieties in b blocks of
size ki.

(For equi-replicate core subdesigns,
it is often easier to find the best dual design, which is obtained
by interchanging the roles of blocks and varieties.)

VT(Γi) = the sum of the variances of variety differences in Γi

VB(Γi) = the sum of the variances of block differences in Γi

VBT(Γi) = the sum of the variances of sums of
one treatment and one block in Γi.

If there are ni drones in each block then, in the whole design ∆,

VT(∆) = bni(bni + v′i − 1) + VT(Γi) + niVBT(Γi) + n2
i VB(Γi).

Use this formula to find the core subdesign which gives the
smallest VT(∆).
As the number of varieties increases, it becomes more
important to choose Γi with a small value of VB(Γi).
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Case 4 continued. k0 = 4 < b− 1, VB(Γi)÷ b(b− 1)/2
Best design for b blocks known to RAB

Γ1 Γ2 Γ3 Γ4
ki 2 3 3 4

2 queens, 2 queens, b workers 2b workers
both boring 2 workers (rep 2) rep 3 rep 2

b = 6 1 1− 0.85 0.87
b = 7 1 1− 0.86 0.92
b = 8 1 1− 0.89 0.93
b = 9 1 1− 0.92
b = 10 1 1−

b = 11 1 1−

b = 12 1 1− 0.98
b = 13 1 1− 1 1.07
b = 14 1 1−

b = 15 1 1− 1.01 1.08

As v increases, Γ3 becomes better than Γ4.
If b ≥ 14, then, as v increases, Γ1 and Γ2 become better than Γ3.
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Case 4 continued. 2 < k0 < b− 1 when b = 8: k0 = 6

k = k0 = 6, and 24 varieties, all workers, all replicated twice.

1 2 3 4 5 6

7 8 9 10 11 12

1 7 13 14 15 16

2 8 17 18 19 20

3 9 13 17 21 22

4 10 14 18 23 24

5 11 15 19 21 23

6 12 16 20 22 24

(One worker for each pair of blocks
except for {A, B}, {C, D}, {E, F} and {G, H}.)
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 5

k = 5 k = 6
20 varieties: 28 varieties:

20 workers, no drones 20 workers, 8 drones

1 2 3 4 5

6 7 8 9 10

1 11 12 13 14

2 6 15 16 17

3 7 11 18 19

4 8 12 15 20

5 9 13 16 18

10 14 17 19 20

1 2 3 4 5 A1

6 7 8 9 10 B1

1 11 12 13 14 C1

2 6 15 16 17 D1

3 7 11 18 19 E1

4 8 12 15 20 F1

5 9 13 16 18 G1

10 14 17 19 20 H1
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 4

k = 5 k = 6
24 varieties: 32 varieties:

16 workers, 8 drones 8 workers, 24 drones

1 2 3 4 A1

5 6 7 8 B1

9 10 11 12 C1

13 14 15 16 D1

1 5 9 13 E1

2 6 10 14 F1

3 7 11 15 G1

4 8 12 16 H1
k′ = 4
rep = 2

1 2 4 A1 A2 A3

2 3 5 B1 B2 B3

3 4 6 C1 C2 C3

4 5 7 D1 D2 D3

5 6 8 E1 E2 E3

6 7 1 F1 F2 F3

7 8 2 G1 G2 G3

8 1 3 H1 H2 H3

k′ = 3
rep 3
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Case 4 continued. k = 5 and k = 6 when b = 8: k0 = 3

k = 5 k = 6
28 varieties: 36 varieties:

12 workers, 16 drones 12 workers, 24 drones

1 2 3 A1 A2

1 4 5 B1 B2

4 6 7 C1 C2

6 8 9 D1 D2

2 8 10 E1 E2

5 10 11 F1 F2

7 11 12 G1 G2

3 9 12 H1 H2

1 2 3 A1 A2 A3

1 4 5 B1 B2 B3

4 6 7 C1 C2 C3

6 8 9 D1 D2 D3

2 8 10 E1 E2 E3

5 10 11 F1 F2 F3

7 11 12 G1 G2 G3

3 9 12 H1 H2 H3
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Health Warnings

The overall message is that there can be phase changes as the
spare capacity for replication (bk− v) decreases.
Therefore it is necessary to compare core subdesigns Γi with
different block size ki.

Although this overall message is correct,
no one has checked the arithmetic in the examples presented,
so individual cases may be wrong.

This is work is progress, not a finished project.
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The cornerstones of experimental design

I Replication.
I Blocking.
I Randomization.

What is old?
What is new?
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Replication: the old. I

In 2012 the UK’s Food and Environment Research Agency
conducted an experiment to find out “the effects of
neonicotinoid seed treatments on bumble bee colonies under
field conditions” (from a DEFRA report available on the web,
Crown copyright 2013).
fera.co.uk/ccss/documents/defraBumbleBeereportPS2371V4A.pdf

Site Treatment of oilseed rape seeds
Site A, near Lincoln no treatment

Site B, near York ModestoTM

Site C, near Scunthorpe ChinookTM

Twenty colonies of bumble bees were placed at each site.
Various outcomes were measured on each colony.
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Replication: the old. II

v
vi
viU1, 1

Site ≡ Treatment3, 2

Colony ≡ E60, 57

Skeleton analysis of variance

Stratum Source df
U Mean 1
Sites Treatments 2
Colonies 57

There is no residual mean square in the stratum containing
Treatments, so we cannot tell if observed differences are caused
by differences between treatments or differences between sites.
Therefore, there is no way of giving confidence intervals for the
estimates of treatment differences, or of giving P values for
testing the hypothesis of no treatment difference. The official
report does claim to give confidence intervals and P values.

The Hasse diagram can clearly show such false replication
before the experiment is carried out.
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Replication: the old. III

False replication is one of the oldest and most common
mistakes in design of experiments.

I S. H. Hurlbert: Pseudoreplication and the design of
ecological field experiments. Ecological Monographs 54
(1984), 187–211.

I I gave advice to the Ministry of Agriculture, Fisheries and
Foods about this problem in the 1980s. See Example 1.1 of
my 2008 book Design of Comparative Experiments.

I T. H. Sparks, R. A. Bailey & D. A. Elston: Pseudorep-
lication: common (mal)practice. SETAC (Society of Environ-
mental Toxicology and Chemistry) News, 17(3) (1997), 12–13.

I S. H. Hurlbert: The ancient black art and transdisciplinary
extent of pseudoreplication. Journal of Comparative
Psychology 123 (2009), 436–443.

Why is this still happening?

Why is it still happening in experiments undertaken or
commissioned by publicly funded bodies?
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Replication: the new

For a long time, we have used high replication as
a surrogate condition for low variance.

My work on block designs with low average replication
shows that, when you are close to the wire,
the surrogate may not be a good guide.

At the Design and Analysis of Experiments conference in Cary,
North Carolina, 4–6 March 2015, there were several talks
(in different sessions, with no link planned in advance)
where the message was that a surrogate measure may not work
when you are close to the wire.

For example, Ching-Shui Cheng discussed supersaturated
designs (for m 2-level factors in n experimental units, with
n < m). One of the classical surrogates for model identifability
is equal replication (“balance”) of the levels of each factor. He
showed that this is not a good guide when the models have
high dimension.
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Blocking: the old. I

The old paradigm is to group the experimental units into blocks
of alike units,
and use the blocks in both the design and the analysis,
in order to remove bias from the estimates of treatment
differences AND from the estimate of experimental error
in order to increase power.

We know how to do this for several systems of blocks,
under orthogonality.
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Blocking: the old. II

In experiments in human-computer interaction,
it is common to ask each participant to undertake a certain task
under several different scenarios.
With four scenarios, the experiment might use 20 participants
once each on four days, and assign scenarios using Latin
squares.

A B C D A B C D A B C D A B C D A B C D
B C D A B C D A B C D A B C D A B C D A
C D A B C D A B C D A B C D A B C D A B
D A B C D A B C D A B C D A B C D A B C
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Blocking: the old. III

Skeleton analysis of variance

Stratum Source df
U Mean 1
Days 3
Participants 19
Days#Participants Scenarios 3

residual 54

. . . the ANOVA pro-
duces three F-values
. . . risk of over-testing
the data . . .

so do not include Days
in the ANOVA

I P. Cairns: HCL. . . Not as it should be: inferential statistics
in HCI research. Proceedings of HCI 2007, 195–201.

This is wrong on two counts:
(i) We do not test for differences between days and between

participants: we expect such differences and fit them in the
model.

(ii) If we do not remove these differences, we decrease the
power for detecting differences between scenarios.

42/47



Blocking: the old. III

Skeleton analysis of variance

Stratum Source df
U Mean 1
Days 3
Participants 19
Days#Participants Scenarios 3

residual 54

. . . the ANOVA pro-
duces three F-values
. . . risk of over-testing
the data . . .

so do not include Days
in the ANOVA

I P. Cairns: HCL. . . Not as it should be: inferential statistics
in HCI research. Proceedings of HCI 2007, 195–201.

This is wrong on two counts:
(i) We do not test for differences between days and between

participants: we expect such differences and fit them in the
model.

(ii) If we do not remove these differences, we decrease the
power for detecting differences between scenarios.

42/47



Blocking: the old. III

Skeleton analysis of variance

Stratum Source df
U Mean 1
Days 3
Participants 19
Days#Participants Scenarios 3

residual 54

. . . the ANOVA pro-
duces three F-values
. . . risk of over-testing
the data . . .

so do not include Days
in the ANOVA

I P. Cairns: HCL. . . Not as it should be: inferential statistics
in HCI research. Proceedings of HCI 2007, 195–201.

This is wrong on two counts:
(i) We do not test for differences between days and between

participants: we expect such differences and fit them in the
model.

(ii) If we do not remove these differences, we decrease the
power for detecting differences between scenarios.

42/47



Blocking: the new. I

As new technologies are used in experimentation
(for example, in genomics)
there may be systems of blocks which the experimenters do not
recognise because they are not called ‘blocks’.
How do we ensure that known methods of construction,
randomization and data analysis are not lost?

In agricultural fields in some countries,
it is more realistic to model spatial variation by
spatial correlation than by discrete blocks.
How should we construct and randomize such experiments,
and analyse data from them?
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Blocking: the new. II

In some recent experiments, the experimental units can be
thought of as the nodes of a graph, with edges between some
nodes. For example, Gerry Humphris of the University of
St Andrews is experimenting with non-medical interventions
such as sending a text message to known binge drinkers on
Friday afternoons. One drinker (a node) may alter his
behaviour and thus affect the behaviour of other people that he
knows (the nodes joined to him in the graph).
How should we construct and randomize such experiments,
and analyse data from them?
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Randomization: the old. I

There is a large body of theory about how to randomize
experiments in simple orthogonal block structures in such a way
that estimators of treatment effects and of their variances are
both unbiased over the randomization.
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Randomization: the old. II

If you randomize an experiment, do not like the outcome,
throw it away and re-randomize, what happens?

More variablity will be assigned to experimental error than to
treatment differences, so the experimenter is less likely to
detect genuine differences between treatments. See:

I R. A. Fisher: Design of Experiments. Oliver and Boyd,
Edinburgh, 1935.

I W. J. Youden: Randomization and experimentation.
Technometrics 14, (1972), 13–22.

This has not stopped people from developing software for
throwing away “undesirable” outcomes of randomization.

I D. T. Bowman: TFPlan: software for restricted
randomization in field plot design. Agronomy Journal 92,
(2000), 1276–1278.

I A talk presented at the Tenth Working Seminar on
Statistical Methods in Variety Testing at Bȩdlewo, Poland,
in July 2014.

46/47



Randomization: the old. II

If you randomize an experiment, do not like the outcome,
throw it away and re-randomize, what happens?

More variablity will be assigned to experimental error than to
treatment differences, so the experimenter is less likely to
detect genuine differences between treatments.

See:
I R. A. Fisher: Design of Experiments. Oliver and Boyd,

Edinburgh, 1935.
I W. J. Youden: Randomization and experimentation.

Technometrics 14, (1972), 13–22.
This has not stopped people from developing software for
throwing away “undesirable” outcomes of randomization.

I D. T. Bowman: TFPlan: software for restricted
randomization in field plot design. Agronomy Journal 92,
(2000), 1276–1278.

I A talk presented at the Tenth Working Seminar on
Statistical Methods in Variety Testing at Bȩdlewo, Poland,
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Randomization: the new

For spatial correlation, and for designs on the nodes of graphs,
I how should we randomize?
I what criterion of validity should we use?
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