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Abstract

Association schemes arise in designed experiments in many
ways.

They were first used in incomplete-block designs, but
they are implicit in the treatment structure of factorial designs
and in many common block structures,
such as row-column designs or nested blocks.

What is nice about them is the link between
the matrices which show the patterns and
the matrices which project onto the common eigenspaces.

In recent work, Agnieszka Łacka and I have considered designs
where the treatments consist of all combinations of levels of
two treatment factors and one additional control treatment.
We construct nested row-column designs which have what we
call control orthogonality and supplemented partial balance.
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An example of a designed experiment

Example

I want to compare 6 new varieties of wheat (3 Dutch, 3 British).
I can use 30 plots, which form a 5× 6 rectangle in a single field.
How do I decide which variety to plant in which plot?

In general,
I Ω is a set of experimental units,
I T is a set of treatments,
I a design is a function f : Ω→ T such that

if ω ∈ Ω then f (ω) is the treatment allocated to unit ω.

Ω is given: usually it has some sort of structure.
T is given: usually it has some sort of structure.

My job is to choose f , possibly subject to some constraints.
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I. What is an association scheme?

The structure on the set Ω of experimental units is often an
association scheme.
The structure on the set T of treatments is often another
association scheme.

But what is an association scheme?

An association scheme on Ω with s associate classes
is a partition of the unordered pairs of distinct elements of Ω
into s classes such that . . .
(a technical condition that I’ll tell you about later).

And similarly for T .
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First example of an association scheme (s = 2)

T consists of 6 new varieties of wheat (3 Dutch, 3 British).

Dutch British

1 2 3 4 5 6

D 1

D 2

D 3

B 4

B 5

B 6

Class 1, shown in red: different varieties from the same country.
Class 2, shown in blue: varieties from different countries.
Class 0, shown in white: same variety.
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Second example of an association scheme (s = 3)

Ω is a 5× 6 rectangle.

Row 1 1 . . . 1 2 2 . . . 5
Column 1 2 . . . 6 1 2 . . . 6

R1 C1 . . . . . .
R1 C2 . . . . . .
...

...
...

...
. . .

...
...

...
. . .

...

R1 C6 . . .
. . .

R2 C1 . . . . . .
R2 C2 . . . . . .
...

...
...

...
. . .

...
...

...
. . .

...
R5 C6 . . . . . .

Class 1, shown in red: different plots in the same row.
Class 2, shown in blue: different plots in the same column.
Class 3, shown in yellow: plots in different rows and columns.
Class 0, shown in white: same plot.
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Third example of an association scheme (s = 2)

Diallel cross from 5 parental lines with no self-crosses

12 13 14 15 23 24 25 34 35 45

{1, 2}
{1, 3}
{1, 4}
{1, 5}
{2, 3}
{2, 4}
{2, 5}
{3, 4}
{3, 5}
{4, 5}

Class 1, in red: crosses with one parental line in common.
Class 2, in blue: crosses with no parental line in common.
Class 0, in white: same cross.
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Fourth example of an association scheme (s = 4)

3 blocks, each consisting of 4 rows × 6 columns

Class 0: same plot.
Class 1: different plots in the same row.
Class 2: different plots in the same column.
Class 3: plots in the same block but different rows and columns.
Class 4: plots in different blocks.
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Adjacency matrices

So where do matrices come in?
Given an association scheme on a set of size N,
the adjacency matrix for class i is the N×N matrix

whose (α, β) entry is equal to

{
1 if (α, β) is in class i
0 otherwise.

Dutch British

1 2 3 4 5 6

D 1

D 2

D 3

B 4

B 5

B 6

A0 = I

A1 =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


A2 =



0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0
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Definition of association scheme

Definition
An association scheme with s classes on a set of size N consists
of N×N adjacency matrices A0, A1, A2, . . . , As satisfying
(i) A0 = I (the identity matrix);
(ii) A0 + A1 + A2 + · · ·+ As = J (the all-1 matrix);
(iii) Ai is symmetric for i = 0, 1, 2, . . . , s;
(iv) For 0 ≤ i ≤ s and 0 ≤ j ≤ s,

AiAj is a linear combination of A0, A1, A2, . . . , As.

The diagonal entries of A2
i are equal to the row sums of Ai,

so an easy consequence of this definition is that
there are integers a0 = 1, a1, a2, . . . , as such that
Ai has ai non-zero entries in every row and in every column.
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First example (N = 6, s = 2)

A0 = I A1 =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

 A2 =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0


a0 = 1 a1 = 2 a2 = 3

A0Ai = AiA0 = Ai for i = 0, 1, 2.

AiJ = JAi = aiJ for i = 0, 1, 2.

So it is enough to check A2
1.

A2
1 = 2I + A1,

so this is an association scheme.
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Bose–Mesner algebra

Given an association scheme with s classes on a set of size N, let
A be the set of all real linear combinations of A0, A1, A2, . . . , As.
Conditions (iii) and (iv) show that A is a commutative algebra.
It is called the Bose–Mesner algebra.

Theorem
There are subspaces W0, W1, . . . , Ws of RN such that

1. if j 6= k then Wj is orthogonal to Wk;

2. every vector v in RN can be expressed uniquely
as v = ∑j wj with wj ∈ Wj;

3. Wj is contained in an eigenspace of Ai, for all i and all j;
4. the idempotent matrix Pj of orthogonal projection onto Wj

is in A, so it is a linear combination of A0, . . . , As;
5. if λij is the the eigenvalue of Ai on Wj then Ai = ∑j λijPj;
6. W0 is the 1-dimensional space of constant vectors.
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Eigenspaces in our examples

T consists of 6 new varieties of wheat (3 Dutch, 3 British).
N = 6 and s = 2; a0 = 1, a1 = 2 and a2 = 3.

subspace description dimension
W0 constant vectors 1
W1 differences between countries 1
W2 differences within countries 4

Ω is a 5× 6 rectangle.
N = 30 and s = 3; a0 = 1, a1 = 5, a2 = 4 and a3 = 20.

subspace description dimension
W0 constant vectors 1
W1 differences between rows 4
W2 differences between columns 5
W3 everything else 20
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Eigenspaces in more of our examples

Diallel cross from 5 parental lines with no self-crosses.
N = 10 and s = 2; a0 = 1, a1 = 6 and a2 = 3.

subspace description dimension
W0 constant vectors 1
W1 main effects of parental lines 4
W2 everything else 5

3 blocks, each consisting of 4 rows × 6 columns.
N = 72 and s = 4; a0 = 1, a1 = 5, a2 = 3, a3 = 15 and a4 = 48.

subspace description dimension
W0 constant vectors 1
W1 differences between blocks 2
W2 differences between rows within blocks 9
W3 differences between columns within blocks 15
W4 everything else 45
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II. Incomplete-block designs

Ω is a set of experimental units;
T is a set of treatments;
f (ω) is the treatment allocated to unit ω.
Suppose that Ω is partitioned into blocks of equal size,
and g(ω) is the block containing unit ω.

The usual linear model for the response Yω is

E(Yω) = τf (ω) + βg(ω) and Var(Y) = σ2I.

In vector form
Y = X1τ + X2β + ε,

where the ω-row of matrix X1 picks out the treatment f (ω)
and the ω-row of matrix X2 picks out the block g(ω).
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Concurrence matrix and information matrix

Y = X1τ + X2β + ε.

Put N12 = X′1X2, whose entries show how often each treatment
occurs in each block (we assume at most once).
The entries in the concurrence matrix N12N′12 show how often
each pair of treatments concur in blocks.
The information matrix is C = X′1X1 − k−1N12N′12, where k is
the block size.

Under normality, the BLUE of τ is

τ̂ = C−X′1(I− k−1X2X′2)Y

and
Var(τ̂) = σ2C−.

Statisticians needed to be able to calculate C− easily in the
pre-computer age.
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Partial balance

N12 = X′1X2 and C = X′1X1 − k−1N12N′12; also Var(τ̂) = σ2C−.

Definition
An incomplete-block design is partially balanced
if there is an association scheme on T such that
the information matrix C is in its Bose–Mesner algebra A.

If C = ∑s
i=0 µiPi, where P0, P1, . . . , Ps are the primitive

idempotents, then µ0 = 0. If all treatment contrasts are
estimable then µi > 0 for i = 1, . . . , s. So

C− =
s

∑
i=1

1
µi

Pi ∈ A,

and so Var(τ̂l − τ̂m) depends only on the associate class
containing (l, m). Moreover, the variance of every normalized
treatment contrast in Wj is σ2/µj.
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Advantages of partial balance

1. Easy to calculate C−.
2. If the subspaces W0, W1, . . . , Ws of the association scheme

have a practical interpretation then the equal variance of
the estimators of all treatment contrasts in the same
subspace is useful.
If the association scheme comes from all combinations of
two or more treatment factors (like our rectangle example),
the design is said to have factorial balance (Yates, 1935).

3. For many values of the numbers of treatments, blocks, and
plots per block, there is a partially balanced design which
minimizes the average value of Var(τ̂l − τ̂m).
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An example of a PBIBD

T consists of 6 new varieties of wheat (3 Dutch, 3 British).
N = 6 and s = 2; a0 = 1, a1 = 2 and a2 = 3.
9 blocks of size 4.

D1 D2 B4 B5 D1 D2 B4 B6 D1 D2 B5 B6

D1 D3 B4 B5 D1 D3 B4 B6 D1 D3 B5 B6

D2 D3 B4 B5 D2 D3 B4 B6 D2 D3 B5 B6

N12N′12 = 6I + 3A1 + 4A2

C =
1
4

(18I− 3A1 − 4A2) = 6P1 +
21
4

P2

C− =
1
6

P1 +
4
21

P2

The comparison between countries has the same variance as in
an unblocked design; for comparisons within each country the
variance is increased by 8/7 if σ2 is unchanged.
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III. Blocking factors with random effects: an example

Ω is a 5× 6 rectangle.
N = 30 and s = 3; a0 = 1, a1 = 5, a2 = 4 and a3 = 20.

subspace description dimension
W0 constant vectors 1
W1 differences between rows 4
W2 differences between columns 5
W3 everything else 20

If rows and columns have random effects then

Var(Y) = σ2I + σ2
R(I + A1) + σ2

C(I + A2)
= σ2P3 + (σ2 + 5σ2

C)P2 + (σ2 + 6σ2
R)P1

+ (σ2 + 5σ2
C + 6σ2

R)P0

= ξ3P3 + ξ2P2 + ξ1P1 + ξ0P0

where ξ3, ξ2, ξ1 and ξ0 are spectral components of variance.
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A mixed model

Ω is a set of experimental units; T is a set of treatments;
X1 is the units-by-treatments incidence matrix.

Assume that E(Y) = X1τ
and that there is an association scheme on Ω,
with Bose–Mesner algebra A, such that Var(Y) ∈ A.

Var(Y) =
s

∑
j=0

ξjPj

with ξj ≥ 0 for j = 0, 1, . . . , s. We usually ignore ξ0, and assume
no linear dependence among ξ1, . . . , ξs.

Var(PjY) = ξjPj, which is effectively a scalar matrix,
so the projected data PjY can be analysed in the usual way,
with information matrix Cj.

Combining information from the analyses in the strata W1, . . . ,
Ws is more straightforward when C1, . . . , Cs have common
eigenspaces. This is called general balance (Nelder, 1965).
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Nested row-column designs

b blocks, each consisting of n1 rows × n2 columns.
N = bn1n2 and s = 4; a0 = 1, a1 = n2 − 1, a2 = n1 − 1,
a3 = (n1 − 1)(n2 − 1) and a4 = (b− 1)n1n2.

info
stratum description dimension matrix

W0 constant vectors 1
W1 blocks b− 1 C1
W2 rows within blocks b(n1 − 1) C2
W3 columns within blocks b(n2 − 1) C3
W4 everything else b(n1 − 1)(n2 − 1) C4

Var(Y) = ξ4P4 + ξ3P3 + ξ2P2 + ξ1P1 + ξ0P0,

where we expect 0 < ξ4 ≤ ξ3 ≤ ξ1 and 0 < ξ4 ≤ ξ2 ≤ ξ1.

Corresponding information matrices C4, C3, C2 and C1.
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IV. Near-factorial treatments

Treatment factor T is quantitative,
with one level 0 and t non-zero levels.
Treatment factor U is qualitative,
with u levels, which are all irrelevant when T = 0.

Example (Cochran and Cox, 1957, Chapter 3)

T = dose, with levels 0, single and double; t = 2.
U = type of chemical to control eelworms; u = 4.
If K and K′ are two chemicals then
a zero dose of K is the same as a zero dose of K′.

Example (Cochran and Cox, 1957, Chapter 4)

T = amount of sulphur to spread on the soil,
with levels 0, 300, 600 and 1200 lb per acre; t = 3.
U = timing, with levels Spring and Autumn; u = 2.
Zero sulphur in Spring is the same as a zero sulphur in
Autumn.
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Control treatment plus t× u factorial

dose T chemical U (u = 4)
(t = 2) none K1 K2 K3 K4

0 X
single X X X X
double X X X X

amount T timing (u = 2)
(t = 3) never Spring Autumn

0 X
300 X X
600 X X
1200 X X
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Treatment subspaces

This is not an association scheme,
but the relevant treatment subspaces are clear.

subspace description dimension
W0 overall mean 1

Wcontrol control versus rest 1
WT main effect of T t− 1
WU main effect of U u− 1
WTU interaction between T and U (t− 1)(u− 1)
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V. Nested row-column designs for near-factorial treatments

info
stratum description dimension matrix

W0 constant vectors 1
W1 blocks b− 1 C1
W2 rows within blocks b(n1 − 1) C2

W3 columns within blocks b(n2 − 1) C3

W4 everything else b(n1 − 1)(n2 − 1) C4

subspace description dimension
W0 overall mean 1

Wcontrol control versus rest 1
WT main effect of T t− 1
WU main effect of U u− 1
WTU interaction between T and U (t− 1)(u− 1)

How can we match the treatment subspaces to the strata?
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Control orthogonality

Definition
A nested row-column design for near-factorial treatments has
control orthogonality if the control treatment occurs equally
often in each row and occurs equally often in each column.

This implies that the contrast between the control treatment
and the rest is in the null space of C0, C1, C2 and C3, so it is
estimated “with full efficiency” in the bottom stratum W4
(but its variance depends on the relative replications).
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Supplemented partial balance

Definition
A nested row-column design for near-factorial treatments has
supplemented partial balance if the non-control treatments are
equally replicated and there is an association scheme on them
such that, for i = 1, 2, 3 and 4,

Ci =


tuci −ci . . . −ci
−ci

... Li
−ci

 ,

where c1, c2, c3 and c4 are scalars and L1, L2, L3 and L4 are
matrices in the Bose–Mesner algebra of the association scheme.

If the design also has control orthogonality then
c1 = c2 = c3 = 0.
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Suitable association schemes

Under supplemented partial balance,
the eigenspaces of C1, C2, C3 and C4 are

W0 with 1 df
Wcontrol with 1 df
within T×U, as per the association scheme.

Agnieszka Łacka and I use association schemes on the
non-control treatments that are
consistent with the factorial association scheme in the sense
that the two sets of subspaces have a common decomposition.
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Some association schemes consistent with T×U

A.S. Eigenspaces
Factorial mean main effect of T main effect of U interaction

WT WU WTU
Rect(t, u) ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
GD(t, u) ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Trivial ︸ ︷︷ ︸ ︸ ︷︷ ︸

EGD(p, q, u) ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
“Consistent” means that
the primitive idempotents of the association scheme
commute with
the primitive idempotents of the factorial association scheme.

Equivalently, the adjacency matrices of the two association
schemes commute with each other.
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Some easy constructions for square blocks

1. If n1 = n2 = tu + c, start with a Latin square of order n1.
Replace c letters by the control treatment,
and the remaining tu letters by the factorial treatments.
Do this in each block.

2. If n1 = n2 = tu, start with a Latin square of order n1
which has every letter on the main diagonal
(this is possible because tu ≥ 4).
Replace all letters on the main diagonal by the control
treatment.
Do this in each block.

A D E C F B
D B F E C A
E F C B A D
F C A D B E
B A D F E C
C E B A D F

−→

0 D E C F B
D 0 F E C A
E F 0 B A D
F C A 0 B E
B A D F 0 C
C E B A D 0
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Some other constructions for square blocks

3. If n1 = n2 = tu and b = t, start with a Latin square of
order t. In block i, replace letter i by a u× u square of
controls, and replace letter j by a u× u Latin square
containing all factorial treatments with level j of T.

1 2
2 1

−→

0 0 0 21 22 23
0 0 0 23 21 22
0 0 0 22 23 21

22 23 21 0 0 0
23 21 22 0 0 0
21 22 23 0 0 0

12 11 13 0 0 0
13 12 11 0 0 0
11 13 12 0 0 0
0 0 0 11 12 13
0 0 0 12 13 11
0 0 0 13 11 12

4. Similar, but, in each u× u subsquare of controls in block i,
replace the controls on the diagonal
by the factorial treatments with level i of T.

These give higher variances for the main effect of T.
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Some constructions for rectangular blocks

5. If n1 = u ≥ 3 and n2 = tu, start with a Latin square of
order u which has every letter on the main diagonal.
Replace all letters on the main diagonal by the control
treatment. Put t copies of this square side by side. In the
i-th copy, use level i of T with the non-control levels of U.

0 11 13 12 0 21 23 22 0 31 33 32
12 0 11 14 22 0 21 24 32 0 31 34
11 14 0 13 21 24 0 23 31 34 0 33
13 12 14 0 23 22 24 0 33 32 34 0

This has even larger variances for the main effect of T,
but . . .

6. If t = u we can confound different factorial effects (such as
U, U + T, U + 2T, etc.) with columns in different blocks.
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Another special construction when t = u

7. If t = u, n1 = t + 1, n2 = t(t + 1), and t is a power of a
prime, start with a balanced incomplete-block design for
t2 + t + 1 treatments in t2 + t + 1 blocks of size t + 1.
This can be arranged as a (t + 1)× (t2 + t + 1) rectangle
with blocks as columns and all treatments once per row.

A B C D E F G H I J K L M
B C D E F G H I J K L M A
E F G H I J K L M A B C D
G H I J K L M A B C D E F

For every letter in the last block, replace every occurrence
by the control treatment. Then remove the last column.

0 B C 0 E 0 G H I J K L 0
B C 0 E 0 G H I J K L 0 0
E 0 G H I J K L 0 0 B C 0
G H I J K L 0 0 B C 0 E 0
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