Association schemes in designed experiments

R. A. Bailey

University of St Andrews
QMUL (emerita)

Abstract

Association schemes arise in designed experiments in many ways.
They were first used in incomplete-block designs, but they are implicit in the treatment structure of factorial designs and in many common block structures,
such as row-column designs or nested blocks.
What is nice about them is the link between
the matrices which show the patterns and
the matrices which project onto the common eigenspaces.
In recent work, Agnieszka Łacka and I have considered designs where the treatments consist of all combinations of levels of two treatment factors and one additional control treatment. We construct nested row-column designs which have what we call control orthogonality and supplemented partial balance.

An example of a designed experiment	Outline
Example I want to compare 6 new varieties of wheat (3 Dutch, 3 British). I can use 30 plots, which form a 5×6 rectangle in a single field. How do I decide which variety to plant in which plot? In general, - Ω is a set of experimental units, - \mathcal{T} is a set of treatments, - a design is a function $f: \Omega \rightarrow \mathcal{T}$ such that if $\omega \in \Omega$ then $f(\omega)$ is the treatment allocated to unit ω. Ω is given: usually it has some sort of structure. \mathcal{T} is given: usually it has some sort of structure. My job is to choose f, possibly subject to some constraints.	I Association schemes II Incomplete-block designs III Blocking factors with random effects IV Near-factorial treatments \checkmark Nested row-column designs for near-factorial treatments

I. What is an association scheme?

The structure on the set Ω of experimental units is often an association scheme.
The structure on the set \mathcal{T} of treatments is often another association scheme.

But what is an association scheme?
An association scheme on Ω with s associate classes is a partition of the unordered pairs of distinct elements of Ω into s classes such that ...
(a technical condition that I'll tell you about later).
And similarly for \mathcal{T}.

First example of an association scheme $(s=2)$

\mathcal{T} consists of 6 new varieties of wheat (3 Dutch, 3 British).

Class 1, shown in red: different varieties from the same country. Class 2, shown in blue: varieties from different countries.
Class 0 , shown in white: same variety.

Class 1, shown in red: different plots in the same row.
Class 2, shown in blue: different plots in the same column.
Class 3, shown in yellow: plots in different rows and columns.
Class 0 , shown in white: same plot.

Third example of an association scheme $(s=2)$
Diallel cross from 5 parental lines with no self-crosses

Class 1, in red: crosses with one parental line in common. Class 2, in blue: crosses with no parental line in common. Class 0, in white: same cross.

Fourth example of an association scheme $(s=4)$

3 blocks, each consisting of 4 rows $\times 6$ columns

Class 0: same plot.
Class 1: different plots in the same row.
Class 2: different plots in the same column.
Class 3: plots in the same block but different rows and columns.
Class 4: plots in different blocks.

Adjacency matrices

So where do matrices come in?
Given an association scheme on a set of size N,
the adjacency matrix for class i is the $N \times N$ matrix
whose (α, β) entry is equal to $\begin{cases}1 & \text { if }(\alpha, \beta) \text { is in class } i \\ 0 & \text { otherwise. }\end{cases}$

$A_{1}=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right] \quad A_{2}=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$

Definition of association scheme

Definition

An association scheme with s classes on a set of size N consists of $N \times N$ adjacency matrices $A_{0}, A_{1}, A_{2}, \ldots, A_{s}$ satisfying
(i) $A_{0}=I$ (the identity matrix);
(ii) $A_{0}+A_{1}+A_{2}+\cdots+A_{s}=J$ (the all-1 matrix);
(iii) A_{i} is symmetric for $i=0,1,2, \ldots, s$;
(iv) For $0 \leq i \leq s$ and $0 \leq j \leq s$,
$A_{i} A_{j}$ is a linear combination of $A_{0}, A_{1}, A_{2}, \ldots, A_{s}$.
The diagonal entries of A_{i}^{2} are equal to the row sums of A_{i}, so an easy consequence of this definition is that there are integers $a_{0}=1, a_{1}, a_{2}, \ldots, a_{s}$ such that A_{i} has a_{i} non-zero entries in every row and in every column.

First example $(N=6, s=2)$

$$
\begin{gathered}
A_{0}=I \quad A_{1}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
a_{0}=1 \quad a_{1}=2 \quad a_{2}=3 \\
\\
A_{0} A_{i}=A_{i} A_{0}=A_{i} \quad \text { for } i=0,1,2 . \\
\\
A_{i} J=J A_{i}=a_{i} J \quad \text { for } i=0,1,2 .
\end{gathered}
$$

So it is enough to check A_{1}^{2}.

$$
A_{1}^{2}=2 I+A_{1},
$$

so this is an association scheme.

Bose-Mesner algebra

Given an association scheme with s classes on a set of size N, let \mathcal{A} be the set of all real linear combinations of $A_{0}, A_{1}, A_{2}, \ldots, A_{s}$. Conditions (iii) and (iv) show that \mathcal{A} is a commutative algebra. It is called the Bose-Mesner algebra.

Theorem
There are subspaces $W_{0}, W_{1}, \ldots, W_{s}$ of \mathbb{R}^{N} such that

1. if $j \neq k$ then W_{j} is orthogonal to W_{k};
2. every vector \mathbf{v} in \mathbb{R}^{N} can be expressed uniquely as $\mathbf{v}=\sum_{j} \mathbf{w}_{j}$ with $\mathbf{w}_{j} \in W_{j}$;
W_{j} is contained in an eigenspace of A_{i}, for all i and all j;
3. the idempotent matrix P_{j} of orthogonal projection onto W_{j} is in \mathcal{A}, so it is a linear combination of A_{0}, \ldots, A_{s};
4. if $\lambda_{i j}$ is the the eigenvalue of A_{i} on W_{j} then $A_{i}=\sum_{j} \lambda_{i j} P_{j}$;
5. W_{0} is the 1-dimensional space of constant vectors.

Eigenspaces in our examples

\mathcal{T} consists of 6 new varieties of wheat (3 Dutch, 3 British).
$N=6$ and $s=2 ; a_{0}=1, a_{1}=2$ and $a_{2}=3$.

subspace	description	dimension
W_{0}	constant vectors	1
W_{1}	differences between countries	1
W_{2}	differences within countries	4

Ω is a 5×6 rectangle.
$N=30$ and $s=3 ; a_{0}=1, a_{1}=5, a_{2}=4$ and $a_{3}=20$.

subspace	description	dimension
W_{0}	constant vectors	1
W_{1}	differences between rows	4
W_{2}	differences between columns	5
W_{3}	everything else	20

Eigenspaces in more of our examples

Diallel cross from 5 parental lines with no self-crosses.
$N=10$ and $s=2 ; a_{0}=1, a_{1}=6$ and $a_{2}=3$.

subspace	description	dimension
W_{0}	constant vectors	1
W_{1}	main effects of parental lines	4
W_{2}	everything else	5

3 blocks, each consisting of 4 rows $\times 6$ columns.
$N=72$ and $s=4 ; a_{0}=1, a_{1}=5, a_{2}=3, a_{3}=15$ and $a_{4}=48$.

subspace	description	dimension
W_{0}	constant vectors	1
W_{1}	differences between blocks	2
W_{2}	differences between rows within blocks	9
W_{3}	differences between columns within blocks	15
W_{4}	everything else	45

II. Incomplete-block designs

Ω is a set of experimental units;
\mathcal{T} is a set of treatments;
$f(\omega)$ is the treatment allocated to unit ω.
Suppose that Ω is partitioned into blocks of equal size, and $g(\omega)$ is the block containing unit ω.

The usual linear model for the response Y_{ω} is

$$
E\left(Y_{\omega}\right)=\tau_{f(\omega)}+\beta_{g(\omega)} \quad \text { and } \quad \operatorname{Var}(\mathbf{Y})=\sigma^{2} I .
$$

In vector form

$$
\mathbf{Y}=X_{1} \boldsymbol{\tau}+X_{2} \boldsymbol{\beta}+\boldsymbol{\epsilon},
$$

where the ω-row of matrix X_{1} picks out the treatment $f(\omega)$ and the ω-row of matrix X_{2} picks out the block $g(\omega)$.

Concurrence matrix and information matrix

$$
\mathbf{Y}=X_{1} \boldsymbol{\tau}+X_{2} \boldsymbol{\beta}+\boldsymbol{\epsilon} .
$$

Put $N_{12}=X_{1}^{\prime} X_{2}$, whose entries show how often each treatment occurs in each block (we assume at most once).
The entries in the concurrence matrix $N_{12} N_{12}^{\prime}$ show how often each pair of treatments concur in blocks
The information matrix is $C=X_{1}^{\prime} X_{1}-k^{-1} N_{12} N_{12}^{\prime}$, where k is the block size

Under normality, the BLUE of τ is

$$
\hat{\boldsymbol{\tau}}=C^{-} X_{1}^{\prime}\left(I-k^{-1} X_{2} X_{2}^{\prime}\right) \mathbf{Y}
$$

and

$$
\operatorname{Var}(\hat{\boldsymbol{\tau}})=\sigma^{2} C^{-} .
$$

Statisticians needed to be able to calculate C^{-}easily in the pre-computer age

Partial balance

$N_{12}=X_{1}^{\prime} X_{2}$ and $C=X_{1}^{\prime} X_{1}-k^{-1} N_{12} N_{12}^{\prime} ;$ also $\operatorname{Var}(\hat{\tau})=\sigma^{2} C^{-}$.
Definition
An incomplete-block design is partially balanced if there is an association scheme on \mathcal{T} such that the information matrix C is in its Bose-Mesner algebra \mathcal{A}.

If $C=\sum_{i=0}^{s} \mu_{i} P_{i}$, where $P_{0}, P_{1}, \ldots, P_{s}$ are the primitive idempotents, then $\mu_{0}=0$. If all treatment contrasts are estimable then $\mu_{i}>0$ for $i=1, \ldots$,s. So

$$
\mathrm{C}^{-}=\sum_{i=1}^{s} \frac{1}{\mu_{i}} P_{i} \in \mathcal{A}
$$

and so $\operatorname{Var}\left(\hat{\tau}_{l}-\hat{\tau}_{m}\right)$ depends only on the associate class containing (l, m). Moreover, the variance of every normalized treatment contrast in W_{j} is σ^{2} / μ_{j}.

Advantages of partial balance

An example of a PBIBD

\mathcal{T} consists of 6 new varieties of wheat (3 Dutch, 3 British).
$N=6$ and $s=2 ; a_{0}=1, a_{1}=2$ and $a_{2}=3$.
9 blocks of size 4 .

1. Easy to calculate C^{-}.
2. If the subspaces $W_{0}, W_{1}, \ldots, W_{s}$ of the association scheme have a practical interpretation then the equal variance of the estimators of all treatment contrasts in the same subspace is useful.
If the association scheme comes from all combinations of two or more treatment factors (like our rectangle example), the design is said to have factorial balance (Yates, 1935).
3. For many values of the numbers of treatments, blocks, and plots per block, there is a partially balanced design which minimizes the average value of $\operatorname{Var}\left(\hat{\tau}_{l}-\hat{\tau}_{m}\right)$.

D1	D2	B4	B5	D1	D2	B4	B6	D1	D2	B5	B6
D1	D3	B4	B5	D1	D3	B4	B6	D1	D3	B5	B6
D2	D3	B4	B5	D2	D3	B4	B6	D2	D3	B5	B6
$C=\frac{1}{4}\left(18 I-3 A_{1}-4 A_{2}\right)=6 P_{1}+\frac{21}{4} P_{2}$											
$C^{-}=\frac{1}{6} P_{1}+\frac{4}{21} P_{2}$											

The comparison between countries has the same variance as in an unblocked design; for comparisons within each country the variance is increased by $8 / 7$ if σ^{2} is unchanged.

A mixed model

Ω is a set of experimental units; \mathcal{T} is a set of treatments; X_{1} is the units-by-treatments incidence matrix.
Assume that $E(\mathbf{Y})=X_{1} \boldsymbol{\tau}$
and that there is an association scheme on Ω,
with Bose-Mesner algebra \mathcal{A}, such that $\operatorname{Var}(\mathbf{Y}) \in \mathcal{A}$.

$$
\operatorname{Var}(\mathbf{Y})=\sum_{j=0}^{s} \xi_{j} P_{j}
$$

with $\xi_{j} \geq 0$ for $j=0,1, \ldots, s$. We usually ignore ξ_{0}, and assume no linear dependence among ξ_{1}, \ldots, ξ_{s}.
$\operatorname{Var}\left(P_{j} \mathbf{Y}\right)=\xi_{j} P_{j}$, which is effectively a scalar matrix, so the projected data $P_{j} \mathbf{Y}$ can be analysed in the usual way, with information matrix C_{j}.
Combining information from the analyses in the strata W_{1}, \ldots, W_{s} is more straightforward when C_{1}, \ldots, C_{s} have common eigenspaces. This is called general balance (Nelder, 1965).
where $\xi_{3}, \xi_{2}, \xi_{1}$ and ξ_{0} are spectral components of variance.

Nested row-column designs		
b blocks, each consisting of n_{1} rows $\times n_{2}$ columns. $N=b n_{1} n_{2}$ and $s=4 ; a_{0}=1, a_{1}=n_{2}-1, a_{2}=n_{1}-1$, $a_{3}=\left(n_{1}-1\right)\left(n_{2}-1\right)$ and $a_{4}=(b-1) n_{1} n_{2}$.		
stratum	description	dimension
W_{0}	constant vectors	1
W_{1}	blocks	$b-1$
W_{2}	rows within blocks	$b\left(n_{1}-1\right)$
W_{3}	columns within blocks	$b\left(n_{2}-1\right)$
W_{4}	everything else	$b\left(n_{1}-1\right)\left(n_{2}-1\right)$

$\operatorname{Var}(\mathbf{Y})=\xi_{4} P_{4}+\xi_{3} P_{3}+\xi_{2} P_{2}+\xi_{1} P_{1}+\xi_{0} P_{0}$,
where we expect $0<\xi_{4} \leq \xi_{3} \leq \xi_{1}$ and $0<\xi_{4} \leq \xi_{2} \leq \xi_{1}$.
Corresponding information matrices C_{4}, C_{3}, C_{2} and C_{1}.

IV. Near-factorial treatments

Treatment factor T is quantitative,
with one level 0 and t non-zero levels.
Treatment factor U is qualitative,
with u levels, which are all irrelevant when $T=0$.
Example (Cochran and Cox, 1957, Chapter 3)
$T=$ dose, with levels 0 , single and double; $t=2$.
$U=$ type of chemical to control eelworms; $u=4$.
If K and K^{\prime} are two chemicals then
a zero dose of K is the same as a zero dose of K^{\prime}.
Example (Cochran and Cox, 1957, Chapter 4)
$T=$ amount of sulphur to spread on the soil,
with levels $0,300,600$ and 1200 lb per acre; $t=3$.
$U=$ timing, with levels Spring and Autumn; $u=2$.
Zero sulphur in Spring is the same as a zero sulphur in Autumn.

V. Nested ro	w-column designs for	near-factorial	reatme	Control orthogonality
stratum	description	dimension	info matrix	Definition A nested row-column design for near-factorial treatments has control orthogonality if the control treatment occurs equally often in each row and occurs equally often in each column.
W_{0}	constant vectors	1		
W_{1}	blocks	$b-1$	C_{1}	
W_{2}	rows within blocks	$b\left(n_{1}-1\right)$	C_{2}	
W_{3}	columns within blocks	$b\left(n_{2}-1\right)$	C_{3}	
W_{4}	everything else	$b\left(n_{1}-1\right)\left(n_{2}-1\right)$	C_{4}	
subspace	description	dimension		This implies that the contrast between the control treatment and the rest is in the null space of C_{0}, C_{1}, C_{2} and C_{3}, so it is estimated "with full efficiency" in the bottom stratum W_{4} (but its variance depends on the relative replications).
W_{0}	overall mean	1		
$W_{\text {control }}$	control versus rest	1		
W_{T}	main effect of T	$t-1$		
W_{U}	main effect of U	$u-1$		
$W_{T U}$	interaction between T and	nd $U \quad(t-1)(u$		
How can we match the treatment subspaces to the strata?				

Supplemented partial balance

Definition
A nested row-column design for near-factorial treatments has supplemented partial balance if the non-control treatments are equally replicated and there is an association scheme on them such that, for $i=1,2,3$ and 4 ,

$$
C_{i}=\left[\begin{array}{cccc}
t u c_{i} & -c_{i} & \ldots & -c_{i} \\
-c_{i} & & & \\
\vdots & & L_{i} & \\
-c_{i} & & &
\end{array}\right]
$$

where c_{1}, c_{2}, c_{3} and c_{4} are scalars and L_{1}, L_{2}, L_{3} and L_{4} are matrices in the Bose-Mesner algebra of the association scheme.

If the design also has control orthogonality then $c_{1}=c_{2}=c_{3}=0$.

Suitable association schemes

Under supplemented partial balance,
the eigenspaces of C_{1}, C_{2}, C_{3} and C_{4} are

$$
\begin{array}{ll}
W_{0} & \text { with } 1 \mathrm{df} \\
W_{\text {control }} & \text { with } 1 \mathrm{df} \\
\text { within } T \times U \text {, as per the association scheme. }
\end{array}
$$

Agnieszka Łacka and I use association schemes on the non-control treatments that are
consistent with the factorial association scheme in the sense that the two sets of subspaces have a common decomposition.

Some association schemes consistent with $T \times U$

"Consistent" means that the primitive idempotents of the association scheme commute with the primitive idempotents of the factorial association scheme.

Equivalently, the adjacency matrices of the two association schemes commute with each other.

Some easy constructions for square blocks

1. If $n_{1}=n_{2}=t u+c$, start with a Latin square of order n_{1}. Replace c letters by the control treatment, and the remaining $t u$ letters by the factorial treatments. Do this in each block.
2. If $n_{1}=n_{2}=t u$, start with a Latin square of order n_{1} which has every letter on the main diagonal (this is possible because $t u \geq 4$).
Replace all letters on the main diagonal by the control treatment.
Do this in each block.

A	D	E	C	F	B							
D	B	F	E	C	A							
E	F	C	B	A	D							
F	C	A	D	B	E							
B	A	D	F	E	C							
C	E	B	A	D	F	$\quad \leftrightarrow$	0	D	E	C	F	B
:---:	:---:	:---:	:---:	:---:	:---:							
D	0	F	E	C	A							
E	F	0	B	A	D							
F	C	A	0	B	E							
B	A	D	F	0	C							
C	E	B	A	D	0							

Some other constructions for square blocks

3. If $n_{1}=n_{2}=t u$ and $b=t$, start with a Latin square of order t. In block i, replace letter i by a $u \times u$ square of controls, and replace letter j by a $u \times u$ Latin square containing all factorial treatments with level j of T.

$$
\begin{array}{|l|l}
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline
\end{array} \rightarrow \begin{array}{|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 21 & 22 & 23 \\
\hline 0 & 0 & 0 & 23 & 21 & 22 \\
\hline 0 & 0 & 0 & 22 & 23 & 21 \\
\hline 22 & 23 & 21 & 0 & 0 & 0 \\
\hline 23 & 21 & 22 & 0 & 0 & 0 \\
\hline 21 & 22 & 23 & 0 & 0 & 0 \\
\hline 12 & 11 & 11 & 13 & 0 & 0 \\
\hline 13 & 12 & 11 & 0 & 0 & 0 \\
\hline 11 & 13 & 12 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 11 & 12 & 13 \\
\hline 0 & 0 & 0 & 12 & 13 & 11 \\
\hline 0 & 0 & 0 & 13 & 11 & 12 \\
\hline
\end{array}
$$

4. Similar, but, in each $u \times u$ subsquare of controls in block i, replace the controls on the diagonal by the factorial treatments with level i of T.
These give higher variances for the main effect of T.

Some constructions for rectangular blocks

5. If $n_{1}=u \geq 3$ and $n_{2}=t u$, start with a Latin square of order u which has every letter on the main diagonal. Replace all letters on the main diagonal by the control treatment. Put t copies of this square side by side. In the i-th copy, use level i of T with the non-control levels of U.

0	11	13	12	0	21	23	22	0	31	33	32
12	0	11	14	22	0	21	24	32	0	31	34
11	14	0	13	21	24	0	23	31	34	0	33
13	12	14	0	23	22	24	0	33	32	34	0

This has even larger variances for the main effect of T, but...
6. If $t=u$ we can confound different factorial effects (such as $U, U+T, U+2 T$, etc.) with columns in different blocks.

Another special construction when $t=u$

7. If $t=u, n_{1}=t+1, n_{2}=t(t+1)$, and t is a power of a prime, start with a balanced incomplete-block design for $t^{2}+t+1$ treatments in $t^{2}+t+1$ blocks of size $t+1$. This can be arranged as a $(t+1) \times\left(t^{2}+t+1\right)$ rectangle with blocks as columns and all treatments once per row.

A	B	C	D	E	F	G	H	I	J	K	L	M
B	C	D	E	F	G	H	I	J	K	L	M	A
E	F	G	H	I	J	K	L	M	A	B	C	D
G	H	I	J	K	L	M	A	B	C	D	E	F

For every letter in the last block, replace every occurrence by the control treatment. Then remove the last column.

0	B	C	0	E	0	G	H	I	J	K	L	0
B	C	0	E	0	G	H	I	J	K	L	0	0
E	0	G	H	I	J	K	L	0	0	B	C	0
G	H	I	J	K	L	0	0	B	C	0	E	0

References

- R. A. Bailey. Association Schemes. Designed Experiments, Algebra and Combinatorics. Cambridge University Press, Cambridge, 2004.
- R. A. Bailey \& A. Łacka. Nested row-column designs for near-factorial experiments with two treatment factors and one control treatment. Journal of Statistical Planning and Inference 165 (2015), pp. 63-77
- W. G. Cochran \& G. M. Cox. Experimental Designs, 2nd edition. Wiley, 1957.
- J. A. Nelder. The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proceedings of the Royal Society, Series A 283 (1965), pp. 163-178.
- F. Yates. Complex experiments. Journal of the Royal Statistical Society, Supplement 2 (1935), pp. 181-247.

