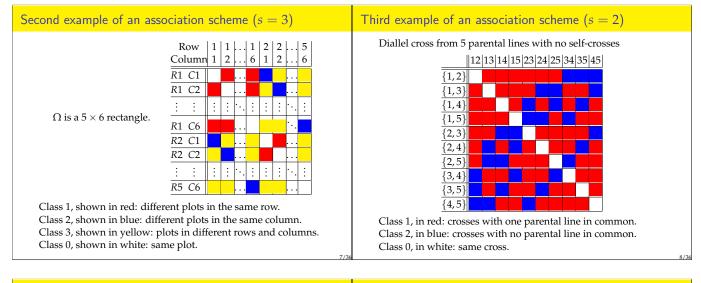


Example I want to compare 6 new varieties of wheat (3 Dutch, 3 British). I can use 30 plots, which form a 5 × 6 rectangle in a single field. How do I decide which variety to plant in which plot? In general, • Ω is a set of experimental units, • T is a set of treatments, • a design is a function $f: \Omega \to T$ such that if $\omega \in \Omega$ then $f(\omega)$ is the treatment allocated to unit ω . Ω is given: usually it has some sort of structure. T is given: usually it has some sort of structure. My job is to choose f , possibly subject to some constraints.	 Association schemes Incomplete-block designs Blocking factors with random effects Near-factorial treatments Nested row-column designs for near-factorial treatments

I. What is an association scheme?	First example of an association scheme ($s=2$)
 The structure on the set Ω of experimental units is often an association scheme. The structure on the set T of treatments is often another association scheme. But what is an association scheme? An association scheme on Ω with <i>s</i> associate classes is a partition of the unordered pairs of distinct elements of Ω into <i>s</i> classes such that (a technical condition that I'll tell you about later). And similarly for T. 	This example of all association scheme $(s - 2)$ T consists of 6 new varieties of wheat (3 Dutch, 3 British). $\begin{array}{c c} Dutch & British \\ 1 & 2 & 3 & 4 & 5 & 6 \\ D 1 & British \\ 1 & 2 & 3 & 4 & 5 & 6 \\ D 1 & British \\ 1 & 2 & 3 & 4 & 5 & 6 \\ D 1 & British \\ D 2 & B & B & B \\ D 2 & B & B & B \\ B & B & B & B \\ $
5/3	Class 0, shown in white: same variety.



$3 \text{ blocks, each consisting of } 4 \text{ rows } \times 6 \text{ columns}$ $a = \frac{1}{2} + \frac{1}{2$	Fourth example of an association scheme $(s=4)$	Adjacency matrices
	Class 0: same plot. Class 1: different plots in the same row. Class 2: different plots in the same column. Class 3: plots in the same block but different rows and columns.	Given an association scheme on a set of size <i>N</i> , the adjacency matrix for class <i>i</i> is the <i>N</i> × <i>N</i> matrix whose (α, β) entry is equal to $\begin{cases} 1 & \text{if } (\alpha, \beta) \text{ is in class } i \\ 0 & \text{otherwise.} \end{cases}$ $A_{0} = I$

Definition of association scheme	First example ($N = 6$, $s = 2$)
Definition An association scheme with <i>s</i> classes on a set of size <i>N</i> consists of $N \times N$ adjacency matrices $A_0, A_1, A_2,, A_s$ satisfying (i) $A_0 = I$ (the identity matrix); (ii) $A_0 + A_1 + A_2 + \dots + A_s = J$ (the all-1 matrix); (iii) A_i is symmetric for $i = 0, 1, 2,, s$; (iv) For $0 \le i \le s$ and $0 \le j \le s$, A_iA_j is a linear combination of $A_0, A_1, A_2,, A_s$. The diagonal entries of A_i^2 are equal to the row sums of A_i , so an easy consequence of this definition is that there are integers $a_0 = 1, a_1, a_2,, a_s$ such that A_i has a_i non-zero entries in every row and in every column.	$A_{0} = I A_{1} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} A_{2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$ $a_{0} = 1 a_{1} = 2 a_{2} = 3$ $A_{0}A_{i} = A_{i}A_{0} = A_{i} \text{for } i = 0, 1, 2.$ $A_{i}J = JA_{i} = a_{i}J \text{for } i = 0, 1, 2.$ So it is enough to check A_{1}^{2} . $A_{1}^{2} = 2I + A_{1}$, so this is an association scheme.

Bose–Mesner algebra	Eigenspaces in our examples
Given an association scheme with <i>s</i> classes on a set of size <i>N</i> , let \mathcal{A} be the set of all real linear combinations of $A_0, A_1, A_2, \ldots, A_s$. Conditions (iii) and (iv) show that \mathcal{A} is a commutative algebra. It is called the Bose–Mesner algebra. Theorem There are subspaces W_0, W_1, \ldots, W_s of \mathbb{R}^N such that 1. if $j \neq k$ then W_j is orthogonal to W_k ;	\mathcal{T} consists of 6 new varieties of wheat (3 Dutch, 3 British). $N = 6$ and $s = 2$; $a_0 = 1$, $a_1 = 2$ and $a_2 = 3$.subspacedescription W_0 constant vectors W_1 differences between countries W_2 differences within countries
2. every vector \mathbf{v} in \mathbb{R}^N can be expressed uniquely as $\mathbf{v} = \sum_i \mathbf{w}_i$ with $\mathbf{w}_i \in W_i$;	Ω is a 5 × 6 rectangle. $N = 30$ and $s = 3$; $a_0 = 1$, $a_1 = 5$, $a_2 = 4$ and $a_3 = 20$.
3. W_i is contained in an eigenspace of A_i , for all i and all j;	subspace description dimension
4. the idempotent matrix P_i of orthogonal projection onto W_i	$\overline{W_0}$ constant vectors 1
<i>is in</i> A <i>, so it is a linear combination of</i> A_0, \ldots, A_s <i>;</i>	W ₁ differences between rows 4
5. <i>if</i> λ_{ij} <i>is the the eigenvalue of</i> A_i <i>on</i> W_j <i>then</i> $A_i = \sum_i \lambda_{ij} P_j$;	W ₂ differences between columns 5
6. W_0 is the 1-dimensional space of constant vectors.	W_3 everything else 20
13/3	s

igenspaces	in more of our examples		II. Incomplete-block designs
$N = 10 \text{ and}$ $\frac{W_0}{W_1}$ $\frac{W_1}{W_2}$ 3 blocks, ea	s from 5 parental lines with no self-crosses. $a = 2; a_0 = 1, a_1 = 6 \text{ and } a_2 = 3.$ description dimension constant vectors 1 main effects of parental lines 4 everything else 5 ch consisting of 4 rows × 6 columns. $a = 4; a_0 = 1, a_1 = 5, a_2 = 3, a_3 = 15 \text{ and } a_4 = 3$	- 48.	$Ω is a set of experimental units; T is a set of treatments; f(ω) is the treatment allocated to unit ω. Suppose that Ω is partitioned into blocks of equal size, and g(ω) is the block containing unit ω. The usual linear model for the response Yω is E(Y_ω) = \tau_{f(ω)} + \beta_{g(ω)} \text{and} Var(Y) = \sigma^2 I.$
subspace	description	dimension	In vector form
W_0	constant vectors	1	$\mathbf{Y} = X_1 \boldsymbol{\tau} + X_2 \boldsymbol{\beta} + \boldsymbol{\epsilon},$
W_1	differences between blocks	2	· · · · · · · · · · · · · · · · · · ·
	differences between rows within blocks	9	where the ω -row of matrix X ₁ picks out the treatment $f(\omega)$
	differences between columns within blocks	15	and the ω -row of matrix X ₂ picks out the block $g(\omega)$.
TAT		45	

45

15/3

 W_4

everything else

14/36

/36

Concurrence matrix and information matrix	Partial balance
$\mathbf{Y} = X_1 \boldsymbol{\tau} + X_2 \boldsymbol{\beta} + \boldsymbol{\epsilon}.$ Put $N_{12} = X_1' X_2$, whose entries show how often each treatment occurs in each block (we assume at most once). The entries in the concurrence matrix $N_{12}N_{12}'$ show how often each pair of treatments concur in blocks. The information matrix is $C = X_1' X_1 - k^{-1} N_{12} N_{12}'$, where <i>k</i> is the block size. Under normality, the BLUE of $\boldsymbol{\tau}$ is	$N_{12} = X'_1 X_2 \text{ and } C = X'_1 X_1 - k^{-1} N_{12} N'_{12}; \text{ also } \text{Var}(\hat{\tau}) = \sigma^2 C^$ Definition An incomplete-block design is partially balanced if there is an association scheme on \mathcal{T} such that the information matrix C is in its Bose–Mesner algebra \mathcal{A} . If $C = \sum_{i=0}^{s} \mu_i P_i$, where P_0, P_1, \dots, P_s are the primitive idempotents, then $\mu_0 = 0$. If all treatment contrasts are estimable then $\mu_i > 0$ for $i = 1, \dots, s$. So
$\hat{\tau} = C^- X_1' (I - k^{-1} X_2 X_2') \mathbf{Y}$ and $\operatorname{Var}(\hat{\tau}) = \sigma^2 C^$ Statisticians needed to be able to calculate C^- easily in the pre-computer age.	$C^{-} = \sum_{i=1}^{s} \frac{1}{\mu_{i}} P_{i} \in \mathcal{A},$ and so Var $(\hat{\tau}_{l} - \hat{\tau}_{m})$ depends only on the associate class containing (l, m) . Moreover, the variance of every normalized treatment contrast in W_{j} is σ^{2}/μ_{j} .

Advantages of partial balance

- 1. Easy to calculate C^- .
- If the subspaces W₀, W₁,..., W_s of the association scheme have a practical interpretation then the equal variance of the estimators of all treatment contrasts in the same subspace is useful. If the association scheme comes from all combinations of
 - If the association scheme comes from all combinations of two or more treatment factors (like our rectangle example), the design is said to have factorial balance (Yates, 1935).
- For many values of the numbers of treatments, blocks, and plots per block, there is a partially balanced design which minimizes the average value of Var(t̂_l − t̂_m).

An example of a PBIBD

T consists of 6 new varieties of wheat (3 Dutch, 3 British). N = 6 and s = 2; $a_0 = 1$, $a_1 = 2$ and $a_2 = 3$. 9 blocks of size 4.

D1	D2	B4	<i>B</i> 5	D1	D2	B4	<i>B</i> 6	D1	D2	<i>B</i> 5	<i>B</i> 6
D1	D3	<i>B</i> 4	<i>B</i> 5	D1	D3	<i>B</i> 4	<i>B</i> 6	D1	D3	<i>B</i> 5	<i>B</i> 6
D2	D3	<i>B</i> 4	<i>B</i> 5	D2	D3	B4	<i>B</i> 6	D2	D3	<i>B</i> 5	<i>B</i> 6

$$\begin{split} N_{12}N_{12}' &= 6I + 3A_1 + 4A_2 \\ C &= \frac{1}{4}\left(18I - 3A_1 - 4A_2\right) \\ &= 6P_1 + \frac{21}{4}P_2 \end{split}$$

$$C^{-} = \frac{1}{6}P_1 + \frac{4}{21}P_2$$

The comparison between countries has the same variance as in an unblocked design; for comparisons within each country the variance is increased by 8/7 if σ^2 is unchanged.

Blocking factors with random effects: an example	A mixed model
$\begin{split} \Omega \text{ is a } 5 \times 6 \text{ rectangle.} \\ N &= 30 \text{ and } s = 3; a_0 = 1, a_1 = 5, a_2 = 4 \text{ and } a_3 = 20. \\ \hline \underline{\text{subspace}} & \underline{\text{description}} & \underline{\text{dimension}} \\ \hline \underline{W_0} & \underline{\text{constant vectors}} & 1 \\ \hline \underline{W_1} & \underline{\text{differences between rows}} & 4 \\ \hline \underline{W_2} & \underline{\text{differences between rows}} & 4 \\ \hline \underline{W_2} & \underline{\text{differences between columns}} & 5 \\ \hline \underline{W_3} & \underline{\text{everything else}} & 20 \\ \hline \text{If rows and columns have random effects then} \\ \hline \text{Var}(\mathbf{Y}) &= \sigma^2 I + \sigma_R^2 (I + A_1) + \sigma_C^2 (I + A_2) \\ &= \sigma^2 P_3 + (\sigma^2 + 5\sigma_C^2) P_2 + (\sigma^2 + 6\sigma_R^2) P_1 \\ &+ (\sigma^2 + 5\sigma_C^2 + 6\sigma_R^2) P_0 \\ &= \xi_3 P_3 + \xi_2 P_2 + \xi_1 P_1 + \xi_0 P_0 \\ \end{split}$ where ξ_3, ξ_2, ξ_1 and ξ_0 are spectral components of variance.	$\begin{array}{l} \Omega \text{ is a set of experimental units; } \mathcal{T} \text{ is a set of treatments;} \\ X_1 \text{ is the units-by-treatments incidence matrix.} \\ \text{Assume that } E(\mathbf{Y}) = X_1 \boldsymbol{\tau} \\ \text{and that there is an association scheme on } \Omega, \\ \text{with Bose-Mesner algebra } \mathcal{A}, \text{ such that } \text{Var}(\mathbf{Y}) \in \mathcal{A}. \\ \\ Var(\mathbf{Y}) = \sum_{j=0}^{s} \xi_j P_j \\ \text{with } \xi_j \geq 0 \text{ for } j = 0, 1, \ldots, s. \text{ We usually ignore } \xi_0, \text{ and assume no linear dependence among } \xi_1, \ldots, \xi_s. \\ \\ Var(P_j \mathbf{Y}) = \xi_j P_j, \text{ which is effectively a scalar matrix,} \\ \text{ so the projected data } P_j \mathbf{Y} \text{ can be analysed in the usual way,} \\ \text{with information matrix } C_j. \\ \\ \\ \\ Combining information from the analyses in the strata W_1, \ldots, W_s is more straightforward when C_1, \ldots, C_s have common eigenspaces. This is called general balance (Nelder, 1965). \\ \end{array}$

	IV. Near-factorial treatments
$b \text{ blocks, each consisting of } n_1 \text{ rows } \times n_2 \text{ columns.}$ $N = bn_1n_2 \text{ and } s = 4; a_0 = 1, a_1 = n_2 - 1, a_2 = n_1 - 1,$ $a_3 = (n_1 - 1)(n_2 - 1) \text{ and } a_4 = (b - 1)n_1n_2.$ $info$ $matrix$	Treatment factor T is quantitative, with one level 0 and t non-zero levels. Treatment factor U is qualitative, with u levels, which are all irrelevant when $T = 0$. Example (Cochran and Cox, 1957, Chapter 3) T = dose, with levels 0, single and double; $t = 2$.
$ \begin{array}{c cccc} \hline W_0 & \text{constant vectors} & 1 \\ \hline W_1 & \text{blocks} & b-1 & C_1 \\ \hline W_2 & \text{rows within blocks} & b(n_1-1) & C_2 \\ \hline W_3 & \text{columns within blocks} & b(n_2-1) & C_3 \\ \hline W_4 & \text{everything else} & b(n_1-1)(n_2-1) & C_4 \\ \hline \end{array} $	I = dose, with levels 0, single and double; $t = 2$. U = type of chemical to control eelworms; u = 4. If <i>K</i> and <i>K'</i> are two chemicals then a zero dose of <i>K</i> is the same as a zero dose of <i>K'</i> . Example (Cochran and Cox, 1957, Chapter 4)
$Var(\mathbf{Y}) = \xi_4 P_4 + \xi_3 P_3 + \xi_2 P_2 + \xi_1 P_1 + \xi_0 P_0,$ where we expect $0 < \xi_4 \le \xi_3 \le \xi_1$ and $0 < \xi_4 \le \xi_2 \le \xi_1$. Corresponding information matrices C_4, C_3, C_2 and C_1 .	T = amount of sulphur to spread on the soil, with levels 0, 300, 600 and 1200 lb per acre; t = 3. U = timing, with levels Spring and Autumn; u = 2. Zero sulphur in Spring is the same as a zero sulphur in Autumn.

Control treatment plus $t imes u$ factorial	Treatment subspaces
$\frac{\text{dose } T \text{chemical } U (u = 4)}{(t = 2) \text{none} K_1 K_2 K_3 K_4}$ $\frac{0 \checkmark u = 4}{0 (t = 2)}$ $\frac{\text{single} \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $	This is not an association scheme, but the relevant treatment subspaces are clear. subspace description dimension W_0 overall mean 1 $W_{control}$ control versus rest 1 W_T main effect of T $t-1$ W_U main effect of U $u-1$ W_{TU} interaction between T and U $(t-1)(u-1)$

stratum	description	dimension	info matrix	
W_0	constant vectors	1		
W_1	blocks	b - 1	C_1	Definition
W_2	rows within blocks	$b(n_1 - 1)$	<i>C</i> ₂	A nested row-column design for near-factorial treatments has
W_3	columns within blocks	$b(n_2 - 1)$	<i>C</i> ₃	control orthogonality if the control treatment occurs equally
W_4	everything else	$b(n_1-1)(n_2-1)$	C_4	often in each row and occurs equally often in each column.
		-		This implies that the contrast between the control treatment
subspace		dimensio	n	and the rest is in the null space of C_0 , C_1 , C_2 and C_3 , so it is
W_0	overall mean	1		
W _{control}	control versus res	t 1		estimated "with full efficiency" in the bottom stratum W_4
W_T	main effect of T	t - 1		(but its variance depends on the relative replications).
W_U	main effect of U	<i>u</i> – 1		
W_{TU}	interaction between T a	and $U (t-1)(u-1)$	1)	

Supplemented partial balance

Definition

A nested row-column design for near-factorial treatments has supplemented partial balance if the non-control treatments are equally replicated and there is an association scheme on them such that, for i = 1, 2, 3 and 4,

$$C_i = \begin{bmatrix} tuc_i & -c_i & \dots & -c_i \\ -c_i & & & \\ \vdots & & L_i \\ -c_i & & & \end{bmatrix},$$

where c_1 , c_2 , c_3 and c_4 are scalars and L_1 , L_2 , L_3 and L_4 are matrices in the Bose–Mesner algebra of the association scheme.

If the design also has control orthogonality then $c_1 = c_2 = c_3 = 0$.

Suitable association schemes

Under supplemented partial balance, the eigenspaces of C_1 , C_2 , C_3 and C_4 are

 $\begin{array}{ll} W_0 & \text{with 1 df} \\ W_{\text{control}} & \text{with 1 df} \\ \text{within } T \times U, \text{ as per the association scheme.} \end{array}$

Agnieszka Łacka and I use association schemes on the non-control treatments that are **consistent** with the factorial association scheme in the sense that the two sets of subspaces have a common decomposition.

Some association schemes consistent with $T imes U$	Some easy constructions for square blocks
A.S.EigenspacesFactorialmean main effect of T main effect of U interaction W_T W_U W_T W_U W_T W_U W_T W_U $GD(t, u)$ W_T Trivial W_T $EGD(p, q, u)$ W_T	 If n₁ = n₂ = tu + c, start with a Latin square of order n₁. Replace <i>c</i> letters by the control treatment, and the remaining <i>tu</i> letters by the factorial treatments. Do this in each block. If n₁ = n₂ = tu, start with a Latin square of order n₁ which has every letter on the main diagonal (this is possible because tu ≥ 4). Replace all letters on the main diagonal by the control treatment.
"Consistent" means that the primitive idempotents of the association scheme commute with the primitive idempotents of the factorial association scheme. Equivalently, the adjacency matrices of the two association schemes commute with each other.	Do this in each block. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Some other constructions for square blocks	Some constructions for rectangular blocks
3. If $n_1 = n_2 = tu$ and $b = t$, start with a Latin square of order <i>t</i> . In block <i>i</i> , replace letter <i>i</i> by a $u \times u$ square of controls, and replace letter <i>j</i> by a $u \times u$ Latin square containing all factorial treatments with level <i>j</i> of <i>T</i> . $ \underbrace{1 \ 2}_{2 \ 1} \longrightarrow \underbrace{0 \ 0 \ 0 \ 21 \ 22 \ 23}_{2 \ 22 \ 23 \ 21 \ 22} \underbrace{11 \ 13 \ 0 \ 0 \ 0}_{13 \ 12 \ 11 \ 0 \ 0} \underbrace{12 \ 11 \ 13 \ 12 \ 0 \ 0}_{0 \ 0 \ 11 \ 12 \ 13} \underbrace{12 \ 11 \ 0 \ 0 \ 0}_{0 \ 0 \ 11 \ 12 \ 13} 12 \ 12 \ 12 \ 12 \ 13 \ 12 \ 12 \ 12 \ $	 5. If n₁ = u ≥ 3 and n₂ = tu, start with a Latin square of order u which has every letter on the main diagonal. Replace all letters on the main diagonal by the control treatment. Put t copies of this square side by side. In the <i>i</i>-th copy, use level <i>i</i> of <i>T</i> with the non-control levels of <i>U</i>. ⁰ 11 13 12 0 21 23 22 0 31 33 32 ¹² 0 11 14 22 0 21 24 32 0 31 34 ¹¹ 14 0 13 21 24 0 23 31 34 0 33 ¹³ 12 14 0 23 22 24 0 33 32 34 0 ¹³ 12 14 0 23 22 24 0 33 32 34 0 ¹⁴ 11 14 0 14 0 15 21 24 0 24 0 24 0 24 0 24 0 24 0 24 0 2

Another special construction when $t = u$	References
7. If $t = u$, $n_1 = t + 1$, $n_2 = t(t + 1)$, and t is a power of a prime, start with a balanced incomplete-block design for $t^2 + t + 1$ treatments in $t^2 + t + 1$ blocks of size $t + 1$. This can be arranged as a $(t + 1) \times (t^2 + t + 1)$ rectangle with blocks as columns and all treatments once per row. $\boxed{\begin{array}{c c} A & B & C & D & E & F & G & H & I & J & K & L & M \\ \hline B & C & D & E & F & G & H & I & J & K & L & M & A \\ \hline E & F & G & H & I & J & K & L & M & A & B & C & D \\ \hline G & H & I & J & K & L & M & A & B & C & D & E & F \\ \hline \end{array}}$ For every letter in the last block, replace every occurrence by the control treatment. Then remove the last column. $\boxed{\begin{array}{c c} 0 & B & C & 0 & E & 0 & G & H & I & J & K & L & 0 \\ \hline B & C & 0 & E & 0 & G & H & I & J & K & L & 0 \\ \hline B & C & 0 & E & 0 & G & H & I & J & K & L & 0 \\ \hline B & C & 0 & E & 0 & G & H & I & J & K & L & 0 \\ \hline B & C & 0 & F & 0 & G & H & I & J & K & L & 0 \\ \hline B & C & 0 & F & 0 & G & H & I & J & K & L & 0 \\ \hline \end{array}}}$	 R. A. Bailey. Association Schemes. Designed Experiments, Algebra and Combinatorics. Cambridge University Press, Cambridge, 2004. R. A. Bailey & A. Łacka. Nested row-column designs for near-factorial experiments with two treatment factors and one control treatment. <i>Journal of Statistical Planning and Inference</i> 165 (2015), pp. 63–77. W. G. Cochran & G. M. Cox. <i>Experimental Designs</i>, 2nd edition. Wiley, 1957. J. A. Nelder. The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. <i>Proceedings of the Royal Society, Series A</i> 283 (1965), pp. 163–178. F. Yates. Complex experiments. <i>Journal of the Royal Statistical Society, Supplement</i> 2 (1935), pp. 181–247.