Sometimes a single system of blocks is not enough, and a more complicated
layout is needed. Then a design suitable for that layout is needed.
Examples include Latin squares and
semi-Latin squares.
Layouts | Some of my
publications |
Observational units inside experimental units
(m / n) |
T. H. Sparks, R. A. Bailey and D. A. Elston:
Pseudoreplication: common (mal)practice.
SETAC (Society of Environmental Toxicology and Chemistry) News,
17(3)
(1997),
12–13.
R. A. Bailey and J. J. D. Greenwood:
Effects of neonicotinoids on bees: an invalid experiment.
Ecotoxicology,
27
(2018),
1–7.
doi: 10.1007/s10646-017-1877
|
Small blocks inside large blocks
(n / b / k) |
R. A. Bailey and T. P. Speed:
Rectangular lattice designs: efficiency factors and analysis.
Annals of Statistics
14
(1986),
874–895.
doi: 12.1214/aos/117635009
[Maths Reviews 0856795 (88e: 62186)]
R. A. Bailey, H. Monod and J. P. Morgan:
Construction and optimality of affine-resolvable designs.
Biometrika
82
(1995),
187–200.
doi: 10.1093/biomet/82.1.187
[Maths Reviews 1332849 (96k: 62212)]
R. A. Bailey:
Resolved designs viewed as sets of partitions.
In Combinatorial Designs and their Applications
(editors F. C. Holroyd, K. A. S. Quinn, C. Rowley and B. S. Webb),
Chapman & Hall/CRC Press Research Notes in Mathematics 403,
CRC Press LLC, Boca Raton,
(1999),
pp. 17–47.
[Maths Reviews 1678589 (2000e: 05017)]
R. A. Bailey:
Choosing designs for nested blocks.
Listy Biometryczne
36
(1999),
85–126.
url: https://sparrow.up.poznan.pl/biometrical.letters/full/BL%2036%202%201.pdf
R. A. Bailey:
Six families of efficient resolvable designs in three replicates.
Metrika
62
(2005),
161–173.
doi: 10.1007/s00184-005-0405-0
[Maths Reviews 2274987]
|
Rows and columns
(r × c) |
R. A. Bailey, D. A. Preece and P. J. Zemroch:
Totally symmetric Latin squares and cubes.
Utilitas Mathematica
14
(1978),
161–170.
[Maths Reviews 0511521 (80a: 05032)]
R. A. Bailey:
Enumeration of totally symmetric Latin squares.
Utilitas Mathematica
15
(1979),
193–216.
[Maths Reviews 0531629 (80d: 05014a) and 0557001 (80d: 05014b)]
R. A. Bailey:
Latin squares with highly transitive automorphism groups.
Journal of the Australian Mathematical Society, Series A
33
(1982),
18–22.
doi: 10.1017/S1446788700017560
[Maths Reviews 0662355 (83g: 05021)]
R. A. Bailey:
Quasi-complete Latin squares: construction and randomization.
Journal of the Royal Statistical Society, Series B
46
(1984),
323–334.
doi: 10.1111/j.2517-6161.1984.tb01305.x
[Maths Reviews 0781893 (86i: 62161)]
R. A. Bailey, D. A. Preece and C. A. Rowley:
Randomization for a balanced superimposition of one Youden square on
another.
Journal of the Royal Statistical Society, Series B
57
(1995),
459–469.
doi: 10.1111/j.2517-6161.1995.tb02040.x
[Maths Reviews 1323350 (96i: 62083)]
Ian Anderson and R. A. Bailey:
Completeness properties of conjugates of Latin squares based on
groups, and an application to bipartite tournaments.
Bulletin of the Institute of Combinatorics and its Applications
21
(1997),
95–99.
[Maths Reviews 1470311 (98d: 05032)]
R. A. Bailey:
Designs for two-colour microarray experiments.
Applied Statistics
56
(2007), 365–394.
doi: 10.1111/j.1467-9876.2007.00582.x
[Maths Reviews 2409757]
C. J. Brien, R. A. Bailey, T. T. Tran and J. Bolund:
Quasi-Latin designs.
Electronic Journal of Statistics,
6
(2012),
1900–1925.
doi: 10.1214/12-EJS732
[Maths Reviews 2988468]
R. A. Bailey, Peter J. Cameron and Tomas Nilson:
Sesqui-arrays,
a generalisation of triple arrays.
Australasian Journal of Combinatorics,
71 (2018), 427–451.
[Maths Reviews 3801275]
|
Small blocks inside rows and columns
((r × c) / n) |
R. A. Bailey:
Semi-Latin squares.
Journal of Statistical Planning and Inference
18
(1988),
299–312.
doi: 10.1016/0378-3758(88)90107-3
[Maths Reviews 0926634 (89b: 62160)]
R. A. Bailey:
An efficient semi-Latin square for twelve treatments in blocks of size
two.
Journal of Statistical Planning and Inference
26
(1990),
263–266.
doi: 10.1016/0378-3758(90)90130-M
[Maths Reviews 1086100]
R. A. Bailey:
Efficient semi-Latin squares.
Statistica Sinica
2
(1992),
413–437.
url: http://www.jstor.org/stable/24304868
[Maths Reviews 1187951 (93j: 62199)]
R. A. Bailey:
Recent advances in experimental design in agriculture.
Bulletin of the International Statistical Institute
55 (1)
(1993),
179–193.
R. A. Bailey:
A Howell design admitting A5.
Discrete Mathematics
167-168
(1997),
65–71.
doi: 10.1016/S0012-365X(96)00216-6
[Maths Reviews 1446733 (98h: 05039)]
R. A. Bailey and P. E. Chigbu:
Enumeration of semi-Latin squares.
Discrete Mathematics
167-168
(1997),
73–84.
doi: 10.1016/S0012-365X(96)00217-8
[Maths Reviews 1446734 (98g: 05026)]
R. A. Bailey and G. Royle:
Optimal semi-Latin squares with side six and block size two.
Proceedings of the Royal Society, Series A
453
(1997),
1903–1914.
doi: 10.1098/rspa.1997.0102
[Maths Reviews 1478138 (98k: 62130)]
R. A. Bailey and H. Monod:
Efficient semi-Latin rectangles: designs for plant disease experiments.
Scandinavian Journal of Statistics
28
(2001),
257–270.
doi: 10.1111/1467-9469.00235
[Maths Reviews 1842248 (2002c: 05038)]
R. A. Bailey:
Semi-Latin squares.
Wiley StatsRef: Statistics Reference Online,
2017,
pp. 1–8.
doi: 10.1002/9781118445112.stat02644.pub2
N. P. Uto and R. A. Bailey:
Balanced semi-Latin rectangles: Properties, existence and constructions for
block size two.
Journal of Statistical Theory and Practice, 14:51 (2020).
doi: 10.1007/s42519-020-00118-3
R. A. Bailey and Leonard H. Soicher:
Uniform semi-Latin squares and their pairwise variance aberrations.
Journal of Statistical Planning and Inference, 213
(2021), 282‐291.
doi: 10.1016/j.jspi.2020.12.003
N. P. Uto and R. A. Bailey:
Constructions for regular-graph semi-Latin rectangles with block size two.
Journal of Statistical Planning and Inference,
221 (2022), 81–89.
doi: 10.1016/j.jspi.2022.02.007
|
Rows and columns inside large blocks
b / (r × c) |
R. A. Bailey and H. D. Patterson:
A note on the construction of row-and-column designs with
two replicates.
Journal of the Royal Statistical Society, Series B
53
(1991),
645–648.
doi: 10.1111/j.2517-6161.1991.tb01853.x
[Maths Reviews 1125721]
H. Monod and R. A. Bailey:
Pseudofactors: normal use to improve design and facilitate analysis.
Applied Statistics
41
(1992),
317–336.
doi: 10.2307/2347564
R. A. Bailey:
Recent advances in experimental design in agriculture.
Bulletin of the International Statistical Institute
55 (1)
(1993),
179–193.
R. A. Bailey:
Resolved designs viewed as sets of partitions.
In Combinatorial Designs and their Applications
(editors F. C. Holroyd, K. A. S. Quinn, C. Rowley and B. S. Webb),
Chapman & Hall/CRC Press Research Notes in Mathematics 403,
CRC Press LLC, Boca Raton,
(1999),
pp. 17–47.
[Maths Reviews 1678589 (2000e: 05017)]
R. A. Bailey and E. R. Williams:
Optimal nested row-column designs with specified components.
Biometrika
94
(2007), 459–468.
doi: 10.1093/biomet/asm039
[Maths Reviews 2331490]
C. J. Brien, R. A. Bailey, T. T. Tran and J. Bolund:
Quasi-Latin designs.
Electronic Journal of Statistics,
6
(2012),
1900–1925.
doi: 10.1214/12-EJS732
[Maths Reviews 2988468]
R. A. Bailey and A. Łacka:
Nested row-column designs for near-factorial experiments with two treatment
factors and one control treatment.
Journal of Statistical Planning and Inference,
165
(2015),
63–77.
doi: 10.1016/j.jspi.2015.04.003
|
Small blocks inside large blocks, with rows running across all small
blocks (r × (b / k)) |
R. A. Bailey and T. P. Speed:
Rectangular lattice designs: efficiency factors and analysis.
Annals of Statistics
14
(1986),
874–895.
doi: 12.1214/aos/117635009
[Maths Reviews 0856795 (88e: 62186)]
R. A. Bailey:
Recent advances in experimental design in agriculture.
Bulletin of the International Statistical Institute
55 (1)
(1993),
179–193.
C. J. Brien, R. A. Bailey, T. T. Tran and J. Bolund:
Quasi-Latin designs.
Electronic Journal of Statistics,
6
(2012),
1900–1925.
doi: 10.1214/12-EJS732
[Maths Reviews 2988468]
|
Smalls rows inside large rows at the same time as small columns
inside large columns
((r / n) ×
(c / m))
|
R. A. Bailey, J. Kunert and R. J. Martin:
Some comments on gerechte designs. I. Analysis for uncorrelated errors.
Journal of Agronomy & Crop Science
165
(1990),
121–130.
doi: 10.1111/j.1439-037X.1990.tb00842.x
R. A. Bailey, J. Kunert and R. J. Martin:
Some comments on gerechte designs. II. Randomization analysis, and other
methods that allow for inter-plot dependence.
Journal of Agronomy & Crop Science
166
(1991),
101–111.
doi: 10.1111/j.1439-037X.1991.tb00891.x
R. A. Bailey, Peter J. Cameron and Robert Connolly:
Sudoku, gerechte designs, resolutions, affine space, spreads, reguli,
and Hamming codes.
The American Mathematical Monthly
115
(2008),
383–404.
url: https://www.jstor.org/stable/27642500
(Translated into Chinese in
Mathematical Advance in Translation
28
(2009),
21–39.)
[Maths Reviews 2408485]
|
Page maintained by R. A. Bailey