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Abstract

We consider designs where each block is a circle,
or can be considered as such by adjoining border plots.

Sometimes there is the extra complication that plots are
cross-classified in a rectangle where rows are blocks and the
columns are also important.

The design is neighbour-balanced if (i) no treatment follows
itself and (ii) every treatment follows every other treatment
equally often. Such designs require a large number of plots.
Weak neighbour balance, which can often be achieved in fewer
plots, replaces (ii) by a combinatorial condition on the
incidence matrix for treatments following each other.
Familiar combinatorial objects such as
doubly regular tournaments, 2-designs,
strongly regular graphs and S-digraphs can be used to
construct circular designs with weak neighbour balance.
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Small example: each treatment comes “once” per block

Wind→

6
... 0 1 2 3 4 5 6

5
... 0 2 4 6 1 3 5

3
... 0 4 1 5 2 6 3

6
... 0 1 2 3 4 5 6

5
... 0 2 4 6 1 3 5

4
... 0 3 6 2 5 1 4

3
... 0 4 1 5 2 6 3

2
... 0 5 3 1 6 4 2

1
... 0 6 5 4 3 2 1

sij :=
# times i is directly
upwind of j

S =



0 1 2 3 4 5 6
0 0

2 2 1 2 1 1

1

1

0

2 2 1 2 1

2

1 1

0

2 2 1 2

3

2 1 1

0

2 2 1

4

1 2 1 1

0

2 2

5

2 1 2 1 1

0

2

6

2 2 1 2 1 1

0
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Definitions of neighbour balance

A design with t treatments each occurring once in each circular
block of size t is

I strongly neighbour balanced if S is a multiple of
the all-1 matrix J;

I neighbour balanced if S is a multiple of J− I;
I weakly neighbour balanced if

I S has zero diagonal
I and there is some λ such that sij ∈ {λ− 1, λ} if i 6= j
I and S>S is completely symmetric.

KF and AM defined WNBDs (weakly neighbour balanced
designs) and found some by brute computer search.

KF, AM and JK showed that WNBDs are universally optimal
(in a precise technical statistical sense).

RAB and PJC gave some constructions and non-existence
results.
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A 0, 1-matrix

If we have a design which is weakly neighbour balanced but
not neighbour balanced then S has zero diagonal, some other
entries λ− 1 and some other entries λ. Put

A = S− (λ− 1)(J− I).

Then
I A is not zero;
I all entries of A are in {0, 1};
I A has zero diagonal;
I A has constant row-sums and constant column-sums;
I A>A− (λ− 1)(A + A>) is completely symmetric.

We know something about (some) matrices like this!
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Three types

I A is not zero;
I all entries of A are in {0, 1};
I A has zero diagonal;
I A has constant row-sums and constant column-sums;
I A>A− (λ− 1)(A + A>) is completely symmetric.

We say that the design has

Type I if A + A> is completely symmetric;
Type II if A + A> is not completely symmetric and λ = 1;
Type III if A + A> is not completely symmetric and λ > 1.

If Type I or Type II, then A>A is completely symmetric,
with constant row- and column-sums, so it can be regarded as
the incidence matrix of a symmetric 2-design.
If Type I, then A has (t− 1)/2 non-zero entries in each row and
column, and so t ≡ 3 mod 4.
If Type III, then A>A is not completely symmetric.
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Hooray for Type I

Theorem
If a WNBD is juxtaposed with a NBD and the result is a WNBD,
then the starting WNBD either is a NBD or has Type I.

Number the positions in each block 1, 2, . . . , starting at the
windy end.

Theorem
If a WNBD has the property that each numbered position has all
treatments equally often, then it either is a NBD or has Type I.

7/15



Hooray for Type I

Theorem
If a WNBD is juxtaposed with a NBD and the result is a WNBD,
then the starting WNBD either is a NBD or has Type I.

Number the positions in each block 1, 2, . . . , starting at the
windy end.

Theorem
If a WNBD has the property that each numbered position has all
treatments equally often, then it either is a NBD or has Type I.

7/15



Type I: A + A> and A>A are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ.

The
above conditions are equivalent to Γ being a doubly regular
tournament. These are conjectured to exist whenever
t ≡ 3 mod 4. If t is prime power we can put Aij = 1 if and only
if j− i is a non-zero square in GF(t). If t is prime then

x ∈ Zt x + 1

0 6= y2 ∈ Zt . . . xy2 (x + 1)y2 . . .
is a WNBD.

t = 3 X, but too small to separate direct effects from upwind

effects
t = 7 X, see next slide
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Type I and t = 7

0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 4 1 5 2 6 3

0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 1 4
0 4 1 5 2 6 3
0 5 3 1 6 4 2
0 6 5 4 3 2 1

t = 11 X
t = 15? RAB tried using A as the incidence matrix of PG(3, 2)
and proved that it is impossible.
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Type I and t = 15

Reid and Brown give the following doubling construction.

A2 =


A>1 0t A1 + It

1>t 0 0>t

A1 1t A1


If A1 is Type I for t then A2 is Type I for 2t + 1.

Doing this with t = 7 gives a doubly regular tournament Γ2
on 15 vertices with an automorphism π of order 7.
If we can find a Hamiltonian cycle ϕ which has
no edge in common with any of πi(ϕ) for i = 1, . . . , 6,
then ϕ, π(ϕ), . . . , π6(ϕ) make a WNBD.

RAB tried and failed to do this by hand.
PJC used GAP, and found 120 solutions.
KF put this A2 into Mathematica and asked it to find
Hamiltonian decompositions.
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PJC used GAP, and found 120 solutions.
KF put this A2 into Mathematica and asked it to find
Hamiltonian decompositions.
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Question

treatments t 2t + 1
doubling

matrix A1 −→ A2
l l

digraph Γ1 Γ2
↑ ↑

design ∆1 ∆2

Could we go directly from ∆1 to ∆2?
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Type I designs with rows and columns

Suppose that t ≡ 3 mod 4 and t is a prime power.
Let x be a primitive element of GF(t).
In the circular sequence

(1, x, x2, x3, . . . , xt−1)

the successive differences give all non-zero elements of GF(t).

Put φ = (x, 1, 0, x2, x3, . . . , xt−1).

If t 6= 3 then the number of non-zero squares in
the successive differences of φ is one different from
the number of non-squares in the successive differences of φ.

The t(t− 1)/2 sequences sφ + i
where s is a non-zero square in GF(t) and i ∈ GF(t)
give a weakly neighbour-balanced design in which every
treatment occurs (t− 1)/2 times in each numbered position.
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Type II: A>A is completely symmetric and λ = 1

Now we can regard A as the incidence matrix of a 2-design,
with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs
(such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find
a single Hamiltonian cycle whose images under a
group of automorphisms of Γ give the blocks of the WNBD.

If A is itself symmetric then it is the adjacency matrix of a
strongly regular graph in which every pair of distinct vertices
have the same number of common neighbours
(for example, the Shrikandhe graph and the Clebsch graph).

Again, familiar tricks and use of symmetry give us WNBDs.

13/15



Type II: A>A is completely symmetric and λ = 1

Now we can regard A as the incidence matrix of a 2-design,
with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs
(such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find
a single Hamiltonian cycle whose images under a
group of automorphisms of Γ give the blocks of the WNBD.

If A is itself symmetric then it is the adjacency matrix of a
strongly regular graph in which every pair of distinct vertices
have the same number of common neighbours
(for example, the Shrikandhe graph and the Clebsch graph).

Again, familiar tricks and use of symmetry give us WNBDs.

13/15



Type II: A>A is completely symmetric and λ = 1

Now we can regard A as the incidence matrix of a 2-design,
with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs
(such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find
a single Hamiltonian cycle whose images under a
group of automorphisms of Γ give the blocks of the WNBD.

If A is itself symmetric then it is the adjacency matrix of a
strongly regular graph in which every pair of distinct vertices
have the same number of common neighbours
(for example, the Shrikandhe graph and the Clebsch graph).

Again, familiar tricks and use of symmetry give us WNBDs.

13/15



Type II: A>A is completely symmetric and λ = 1

Now we can regard A as the incidence matrix of a 2-design,
with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs
(such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find
a single Hamiltonian cycle whose images under a
group of automorphisms of Γ give the blocks of the WNBD.

If A is itself symmetric then it is the adjacency matrix of a
strongly regular graph in which every pair of distinct vertices
have the same number of common neighbours
(for example, the Shrikandhe graph and the Clebsch graph).

Again, familiar tricks and use of symmetry give us WNBDs.

13/15



Type II: A>A is completely symmetric and λ = 1

Now we can regard A as the incidence matrix of a 2-design,
with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs
(such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find
a single Hamiltonian cycle whose images under a
group of automorphisms of Γ give the blocks of the WNBD.

If A is itself symmetric then it is the adjacency matrix of a
strongly regular graph in which every pair of distinct vertices
have the same number of common neighbours
(for example, the Shrikandhe graph and the Clebsch graph).

Again, familiar tricks and use of symmetry give us WNBDs.

13/15



Type III: A>A− (λ− 1)(A + A>) is completely
symmetric, but A>A and (A + A>) are not

If A1 has Type I for t treatments then
A1 A1 + It . . . A1 + It

A1 + It A1 . . . A1 + It
...

...
. . .

...
A1 + It A1 + It . . . A1

 has Type III for mt treatments
with λ = m(t + 1)/4

and


0 1>t 0 0>t
0t A1 1t A>1
0 0>t 0 1>t
1t A>1 0t A1

 has Type III for 2(t + 1) treatments
with λ = (t + 1)/2.

The second type is the adjacency matrix of what
Cameron and Babai call an S-digraph.
t = 3 leads to the only Type III WNBDs (t = 6 and t = 8)
found by KF and AM.
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Type III doubling (or multiplying) constructions

Again, is there a way of going directly from the smaller design
to the larger one?
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