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Abstract I

The expectation part of a linear model is often presented
as a single equation with unknown parameters,
and the reader is supposed to know that this is
shorthand for a whole family of expectation models
(for example, is there interaction or not?).

Nelder explained this in a 1977 RSS paper.

I find it helpful to show the
family of models on a Hasse diagram.
I will show examples from
experiments in agriculture, industry and ecology.

In a more recent development,
I show how we can go a stage further.
By changing the lengths of the edges in this Hasse diagram,
we can use it as a visual display of the analysis of variance.
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Abstract II

Some scientists find the original Hasse diagram
easier to understand than a single equation
(or even a collection of equations) for the models,

and they find the scaled Hasse diagram
easier to interpret than the standard analysis-of-variance table.
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Linear model for two factors

Given two treatment factors A and B, the linear model for
response Yω on unit ω is often written as follows.
If A(ω) = i and B(ω) = j then

Yω = µ + αi + βj + γij + εω,

where the εω are random variables with zero means and
a covariance matrix whose eigenspaces we know.

Some authors: “Too many parameters! Let’s impose
constraints.”
(a) ∑

i
αi = 0, and so on, or

(b) ∑
i

riαi = 0, where ri = |{ω : A(ω) = i}|, and so on, or

(c) α1 = 0, or . . .
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Linear model with constraints: some bad consequences

Yω = µ + αi + βj + γij + εω

(a) ∑
i

αi = 0, and so on, or

(b) ∑
i

riαi = 0, where ri = |{ω : A(ω) = i}|, and so on, or . . .

I It is too easy to give all parameters the same status,
and then the conclusions “βj = 0 for all j” and
“γij = 0 for all i and j” appear to be comparable.

I If some parameters are, after testing, deemed to be zero,
the estimated values of the others may not give the vector
of fitted values.
For example, if both main effects and interaction are
deemed to be zero, then µ̂ under constraint (a) is not
the fitted overall mean if replications are unequal.

Popular software allows both of these.
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Say goodbye to linear models with incremental parameters
and constraints

Yω = µ + αi + βj + γij + εω

(a) ∑
i

αi = 0, and so on, or

(b) ∑
i

riαi = 0, where ri = |{ω : A(ω) = i}|, and so on,

or
(c) α1 = 0, or . . .
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Nelder’s approach to such linear models

Yω = µ + αi + βj + γij + εω

John Nelder had a rant about the constraints on parameters
in his 1977 paper ‘A reformulation of linear models’,
Journal of the Royal Statistical Society, Series A 140, 48–76,
and various later papers too.

Essentially he said:

I if γij = 0 for all i and j then the model simplifies to

Yω = µ + αi + βj + εω

so that the expectation of the vector Y lies in a subspace
of dimension at most n + m− 1,
where n and m are the numbers of levels of A and B;

I if βj = 0 for all j, but the γij are not all zero,
then the model does not simplify at all.
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RAB’s approach to such linear models

Yω = µ + αi + βj + γij + εω

This equation is a short-hand for saying that there are FIVE
subspaces which we might suppose to contain the vector E(Y).

Let us parametrize these subspaces separately,
and consider the relationships between them.

This is the approach which I always use in teaching
and in consulting, and in my 2008 book.
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Expectation subspaces

E(Y) ∈ VA ⇐⇒ there are constants αi such that
E(Yω) = αi whenever A(ω) = i.

dim(VA) = number of levels of A = n.

E(Y) ∈ VB ⇐⇒ there are constants βj such that
E(Yω) = βj whenever B(ω) = j.

E(Y) ∈ VU ⇐⇒ there is a constant µ such that
E(Yω) = µ for all ω.

E(Y) ∈ VA + VB ⇐⇒ there are constants θi and φj such that
E(Yω) = θi + φj if A(ω) = i and B(ω) = j.

E(Y) ∈ VA∧B ⇐⇒ there are constants γij such that
E(Yω) = γij if A(ω) = i and B(ω) = j.
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Dimensions when A has n levels and B has m levels

For general factors A and B:

dim(VA + VB) = dim(VA) + dim(VB)− dim(VA ∩VB).

If all combinations of levels of A and B occur, then

VA ∩VB = VU,

which has dimension 1, so

dim(VA + VB) = dim(VA) + dim(VB)− 1 = n + m− 1,

and A∧ B has nm levels so

dim(VA∧B) = nm.
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The partial order on subspaces

If V1 and V2 are two subspaces,
write V1 < V2 to indicate that V1 is a subspace of V2
but V1 6= V2.

Write V1 ≤ V2 to mean that V1 is a subspace of V2
(including the possibility that V1 = V2).

The relation “is a subspace of” is a partial order,
which means that

I V ≤ V for all subspaces V;
I if V1 ≤ V2 and V2 ≤ V1 then V1 = V2;
I if V1 ≤ V2 and V2 ≤ V3 then V1 ≤ V3.
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Hasse diagram

Every partially ordered set (poset)
can be shown on a Hasse diagram.

Put a symbol for each object (here, a subspace).

If V1 < V2 then
the symbol for V1 is lower in the diagram
than the symbol for V2,
and is joined to it by lines that are traversed upwards.

So we can use a Hasse diagram to show the subspaces
which are being considered to model the expectation of Y.

Now it is helpful to show the dimension of each subspace
at the appropriate place in the diagram.
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Hasse diagram for model subspaces

� VU1

�VA n � VBm

� VA + VBn + m− 1

� VA∧Bnm

�
�
�
�

@
@
@

@
�
�
�
�

@
@

@
@

null model

only factor B makes any difference

additive model

full model

If one subspace is contained in another then it is joined to it
by an upwards line, or a sequence of such lines.
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Main effects and interaction

� VU1

�VA n � VBm

� VA + VBn + m− 1

� VA∧Bnm

�
�
�
�

@
@
@

@
�
�
�
�

@
@

@
@

The vector of fitted values in VU has the
grand mean in every coordinate.

Each coordinate in the vector of fitted values
in VB is the mean on that level of B.

The main effect of factor B is the difference
between the vector of fitted values in VB and
the vector of fitted values in VU.

The interaction between factors A and B is
the difference between the vector of fitted
values in VA∧B and the vector of fitted values
in VA + VB.
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Different approaches in different software

The command anova in GenStat gives, as part of its output,
the list of estimated parameters (with their standard errors)
for each expectation model
that is not a sum of two smaller ones.

Compare this with the command aov in R,
which gives a list of estimated incremental parameters,
subject to some side conditions
over which the user has limited control.
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That comparison again

I fit all the models separately,
then look at the differences in SS(fitted values) and in df
between each pair of models joined by an edge.

Most other software chooses a route from the bottom to the top.
At each stage,
it fits incremental parameters for the bigger model,
allowing for what has already been fitted for the smaller model,
so it needs some side constraints on the parameters for the
larger model.
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Nothing new here

Using a Hasse diagram to show the family of expectation
models is not new. For example, see
I C. J. Brien: A model comparison approach to linear

models, Utilitas Mathematica 36 (1989), 225–254.
I R. A. Bailey: Principles of designed experiments in

J. A. Nelder’s papers, in Methods and Models in Statistics
(eds. Niall Adams, Martin Crowder, David J. Hand and
David Stephens), Imperial College Press (2004), 171–194.

I R. A. Bailey: Design of Comparative Experiments,
Cambridge University Press, 2008.

I Brenton R. Clarke: Linear Models: the Theory and Application
of Analysis of Variance, John Wiley & Sons, 2008.

If the family of expectation models contains
V1 + V2 and V1 ∩V2 whenever it contains both V1 and V2
then the partially ordered set is called a lattice.
Brien and Clarke use the word lattice for the Hasse diagram.
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Polynomial models

Suppose that we apply quantity xi of something to unit i,
and then measure quantity Yi of something else on unit i,
for i = 1, . . . , n.

We want a model that predicts Y as a function of x.
We might try a cubic polynomial:

Yi = a + bxi + cx2
i + dx3

i + εi.

A special case of this is the quadratic polynomial:

Yi = e + fxi + gx2
i + εi,

and a special case of that is the straight line:

Yi = h + kxi + εi.
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Hasse diagram of polynomial models

�

�

�

cubic polynomial

straight line

constant

4

2

1

� quadratic polynomial3

Warning: the best-fitting
quadratic polynomial is
not usually obtained by
taking the best-fitting
cubic polynomial and
removing the term in x3.

Another warning: although there is only one route from the
bottom to the top of the diagram, some software allows you to
calculate the sum of squares for x after allowing for x2.
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Algorithm for model fitting
1. Start at the top of the Hasse diagram.

2. At point V, assume that E(Y) is in, or close to, V. Then

2.1 Choose a unused downwards edge.
2.2 Suppose that the point at the bottom of the edge is W.
2.3 Perform a test of the hypothesis that

PV(E(Y))− PW(E(Y)) = 0,
using the residual mean square in the appropriate stratum.

2.4 If the hypothesis is not rejected then

2.4.1 conclude that E(Y) is close enough to W for our purposes;
2.4.2 do not change the residual mean square;
2.4.3 move down to point W, and repeat from Step 2.

2.5 Otherwise, return to Step 2.1, if possible.
2.6 If there are no unused downwards edges from V then

2.6.1 report that the model cannot be simplified from V;
2.6.2 report the vector of fitted values in V;
2.6.3 if there is more than one edge downwards from V,

then the fitted model is additive in some smaller models,
so it is equivalent (and helpful) to report the vectors of
fitted values for the endpoints of all these edges;

2.6.4 use appropriate residual mean squares to report
standard errors of differences between these fitted values;

2.6.5 stop.
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2.4 If the hypothesis is not rejected then
2.4.1 conclude that E(Y) is close enough to W for our purposes;
2.4.2 do not change the residual mean square;
2.4.3 move down to point W, and repeat from Step 2.

2.5 Otherwise, return to Step 2.1, if possible.
2.6 If there are no unused downwards edges from V then

2.6.1 report that the model cannot be simplified from V;
2.6.2 report the vector of fitted values in V;
2.6.3 if there is more than one edge downwards from V,

then the fitted model is additive in some smaller models,
so it is equivalent (and helpful) to report the vectors of
fitted values for the endpoints of all these edges;

2.6.4 use appropriate residual mean squares to report
standard errors of differences between these fitted values;

2.6.5 stop.
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What about orthogonality?

Vector subspaces V1 and V2 are geometrically orthogonal to
each other if

V1 ∩ (V1 ∩V2)
⊥ is orthogonal to V2 ∩ (V1 ∩V2)

⊥ .

If every pair of subspaces in our model collection is
geometrically orthogonal,
and the model collection is a lattice (it contains V1 ∩V2 and
V1 + V2 whenever it contains V1 and V2),
then all routes from the top of the Hasse diagram to the bottom
will give the same result.

Otherwise, different routes can give different conclusions for
some data vectors.
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Example with two treatment factors: feeding chickens

Four diets for feeding
newly-hatched chickens were
compared. The diets
consisted of all levels of
Protein (groundnuts or soya
bean) with two levels of
Fishmeal (added or not).
Each diet was fed to two
chickens, and they were
weighed at the end of six
weeks.

� VU1

�VProtein 2 � VFishmeal2

� VP + VF3

� VP∧F4

�
�
�
�

@
@

@
@
�
�
�
�

@
@

@
@
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Chicken example: anova

(Subset of data from Carpenter and Duckworth, 1941)

Source SS df MS VR
Protein 4704.5 1 4704.50 35.57
Fishmeal 3120.5 1 3120.50 23.60
Protein∧ Fishmeal 128.0 1 128.00 0.97
residual 529.0 4 132.25

You know how to interpret the anova table:
do the scientists who did the experiment know how to?
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Scaling the Hasse diagram of expectation subspaces

Suppose that V1 and V2 are expectation subspaces,
with V1 < V2,
and an edge joining V1 to V2.

The mean square for
the extra fit in V2 compared to the fit in V1 is

SS(fitted values in V2) − SS(fitted values in V1)
dim(V2)− dim(V1)

.

Scale the Hasse diagram so that each edge has length
proportional to the relevant mean square,
and show the residual mean square to give a scale.

This really is a new idea, which I thought of about six years ago.
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Chickens: scaled Hasse diagram of expectation subspaces

� VU

� VFishmeal

�VProtein

VP + VF

VP∧F

�
�
�
�
�
�

@
@

@
@
@

@
@
@

@

@
@
@

@
@

@
@
@

@

�
�
�
�
�
�

residual mean square

There is no evidence of any interaction,
so we can simplify to the additive model
(but we don’t change the residual mean square).
Neither main effect is zero, so we cannot simplify further.
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Example: an experiment about protecting metal

(Data from Crowder and Kimber, 1997)

An experiment was conducted to compare two protective dyes
for metal, both with each other and with no dye. Ten braided
metal cords were broken into three pieces. The three pieces of
each cord were randomly allocated to the three treatments.
After the dyes had been applied, the cords were left to weather
for a fixed time, then their strengths were measured, and
recorded as a percentage of the nominal strength specification.

Factors: Dye, with three levels (no dye, dye A, Dye B);
Cords, with ten levels;
U, with one level; E, with 30 levels.
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Cords: Hasse diagram of expectation subspaces

�

�

�

Vcords10

Vcords + Vdyes12

Vcords + VT11

We assume that there are differences between cords,
so all the models that we consider include Vcords.

There is another factor T (To-dye-or-not-to-dye).
It has one level on ‘no dye’ and another level on both real dyes.
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Cords: Scaled Hasse diagram of expectation subspaces

�

�

�

Vcords10

Vcords + Vdyes12

Vcords + VT11

residual mean square

There is no evidence of a difference between dye A and dye B;
so we can simplify to the model Vcords + VT.
Now there is definitely a difference between no dye and real
dyes.
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An experiment with a quantitative factor

(Data from Yates, 1937)
An experiment on forage crops compared five seed mixtures in
the presence and absence of nitrogen fertilizer. All ten
combinations were grown in plots in five different fields.
For each crop mixture in each field, the recorded response is
improvement in yield, in tons per acre, if fertilizer is added.

Fields are like cords: we assume that there are differences
between them but we do not care about their differences.

Crop mixtures are like diets or dyes: we are interested in their
differences.

Crop mixtures are not like diets and dyes, because the levels
are quantitative:

100% oats 75% oats 50% oats 25% oats 0% oats
0% vetch 25% vetch 50% vetch 75% vetch 100% vetch
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An intermediate model: linear in vetch

×

×

×

× ×

0 25 50 75 100
0

1

2

% vetch

mean improvement with N, in tons/acre

Intermediate model:
improvement = field parameter + linear(% vetch)
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Vetch: Hasse diagram of models

�

�

fields and mixtures

fields

9

5

� fields and linear function of % vetch6

Bailey LinStat 2018 31/48



Vetch: scaled Hasse diagram of models

� Vfields5

Vfields + Vmixtures9
Vfields + Vlinear vetch6

residual mean square

There is no evidence of any difference between mixtures
other than that due to a linear trend in the proportion of vetch;
so we can simplify to the model Vfields + Vlinear vetch.
Now there is definitely a linear trend in the proportion of vetch.
(Yates does not seem to have noticed this linear component of
the interaction between N and the proportion of vetch.)
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Factorial treatments plus control, in 4 blocks

Type Dose Fumi-
gant

0 0 None
N 1 Some
N 2 Some
M 1 Some
M 2 Some
S 1 Some
S 2 Some
K 1 Some
K 2 Some

� VBlocks4

� VB + VFumigant5

�VB + VDose 6 � VB + VType8

� VB + VDose + VType9

� VB + VDose∧Type12

�
�
�
�

@
@

@
@
�
�
�
�

@
@
@

@

What happens if I forget to include the factor Fumigant?
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Fumigation: scaled Hasse diagram

� VBlocks

� VB + VFumigant�VB + VDose

� VB + VType�VB + VDose + VType
�

VB + VDose∧Type

�
�
�
�
�

�
�
�
�
�

residual mean square

The differences between the five types explain all the
differences between treatments.
How can we automate the production of such diagrams so that
(i) names do not overlap, (ii) boxes are omitted if necessary, and
(iii) a visible multiple of the residual mean square is shown?
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More than one residual mean square

This approach can be extended to situations like split-plot
designs with more than one relevant residual mean square
by using different colours (or types of line)
for the corresponding edges.
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Split-plot example: cider apples

24 cider-apple trees were
grouped into six squares of
four trees each. Three spray
treatments were applied,
each to two whole squares.
Four pruning methods were
applied, one on each tree per
square. The experimenters
recorded the percentage of
apples from each tree that fell
after a heavy gale in October.

� VU1

�VSpray 3 � VPruning4

� VS + VP6

� VS∧P12

�
�
�
�

@
@

@
@
�
�
�
�

@
@

@
@
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Cider apples: scaled Hasse diagram

� VU

�VSpray

� VPruning

�VS + VP
�

VS∧P
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residual mean squares

squares

trees in squares
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Non-orthogonality

These diagrams can be extended
to deal with non-orthogonal models.

Now edges that used to have the same length
can have different lengths.

The diagram clearly shows when
fitting models in a different order can give different results.
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Small non-orthogonal example

Factors A and B both have two levels. For practical or ethical
reasons, one combination of levels cannot be used.
Both of the following are possible outcomes.

��
��

PP
PP

B
B
B
B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�
�
�
�

�
��

�

VU

VAVB

VA + VB
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�
�
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�
�
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�
�
�
�

B
B
B
B
B
B
B
B
B
B
B

PP
PP

��
��

�

��
�

VU

VAVB

VA + VB

Neither A nor B explains much of
the data, but they do together.

Either factor explains the data,
with no need for the other.
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A (comparatively simple) biodiversity experiment

A, B, C, D, E, F—size types of freshwater “shrimp”.
Put 12 shrimps in a jar with stream water and alder leaf litter.
Measure how much leaf litter is eaten after 28 days.

Experimental unit = jar.

R = Richness

T Treatment R x1 x2 x3 x4 x5 x6
1 A 12 of type A 1 12 0 0 0 0 0
...

...
6 F 12 of type F 1 0 0 0 0 0 12
7 AB 6 of A, 6 of B 2 6 6 0 0 0 0
...

...
21 EF 6 of E, 6 of F 2 0 0 0 0 6 6
22 ABC 4 of A, 4 of B, 4 of C 3 4 4 4 0 0 0

...
...

41 DEF 4 of D, 4 of E, 4 of F 3 0 0 0 4 4 4
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...
...

41 DEF 4 of D, 4 of E, 4 of F 3 0 0 0 4 4 4
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Expectation subspaces for biodiversity experiment

E(Y) ∈ VU ⇐⇒ there is a constant µ such that
E(Yω) = µ for all ω.

E(Y) ∈ VR ⇐⇒ there are constants αj such that
E(Yω) = αj whenever R(ω) = j.

E(Y) ∈ VS ⇐⇒ there are constants βi such that

E(Yω) =
6

∑
i=1

βixi(ω).

E(Y) ∈ VR + VS ⇐⇒ E(Yω) = αR(ω) +
6

∑
i=1

βixi(ω).

E(Y) ∈ VR∗S ⇐⇒ there are constants γij such that

E(Yω) =
6

∑
i=1

γi,R(ω)xi(ω).

E(Y) ∈ VT ⇐⇒ E(Yω) = δT(ω).
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Hasse diagram for model subspaces (biodiversity)

� VU1

�VR 3 � VS6

� VR + VS8

� VR∗S

� VT

18

41

�
�
�
�

@
@
@

@
�
�
�
�

@
@

@
@

null model

only richness makes any difference
each shrimp has its own rate

additive model

each shrimp rate depends on richness

full model

R + (x1 + · · ·+ x6) + R :(x1 + · · ·+ x6) + T
Does your software interpret this correctly?
(Thanks to Justin Thong.)
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Success!

An ecology journal published
I the Hasse diagram of the family of models
I the statement that each row of an ANOVA table is for a

difference between models.
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Analysis of Variance (ANOVA) table

Source df SS MS F P
Richness 2 0.000009 0.000005 0.49 n.s.
Shrimp 5 0.003859 0.000772 81.37 < 0.0005
Richness ∗ Shrimp 10 0.000127 0.000013 1.34 n.s.
Treatment 23 0.000105 0.000005 0.48 n.s.
Block 3 0.000067 0.000022
Error 120 0.001138 0.000009
Total 163 0.005306

Each row in the ANOVA table represents not a model but the
difference between a larger model and the next smaller one.
See Fig. 1 for how the models are related.

Verbatim from Journal of Animal Ecology
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What the data showed: mean squares

qq

qqqq

ConstantRichness

ShrimpRichness + Shrimp
Richness ∗ ShrimpTreatment

Scale:
3× residual mean square

Conclusions:

The model Richness does not explain the
data.

The model Shrimp explains the data well.

There is no evidence that any larger model
does any better.
Two experiments, with two responses
each, all led to similar conclusions.
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Diagram from a paper in Global Change Biology

Composition × Temp. 
(45) 

Composition + Richness + Temp. + Type ×  Temp. 
(29) 

Composition + Type ×  Temp. 
(23) 

Richness × Temp. 
 + Type (15) 

Richness × Temp. 
(12) 

Rich + Type + Temp. 
(9) 

Richness + Temp. 
(6) 

Type 
(4) 

Constant 
(1) 

Composition + Richness ×  Temp. 
(23) 

Composition + Temp.  
(17) 

Composition  
(15) 

Richness + Type 
(7) 

Richness 
(4) 

Richness × Temp. 
 + Type × Temp. (21) 

Type × Temp. 
 + Richness (15) 

Type × Temp. 
(12) 

Type + Temp. 
(6) 

Temp. 
(3) 

a	  

c	  

b	  

c	  
d	  

b	  

d	  

g	  

c	  

f	  

e	  
g	  

h	  

f	  

d	  

e	  

b	  

f	   g	  e	  

e	  

f	  

d	  

b	  

b	  

c	  

d	   c	  

g	  

g	  

e	  
f	  

Bailey LinStat 2018 46/48



Using (scaled) Hasse diagrams

I have found that non-mathematicians find

I Hasse diagrams easier to interpret than
equations with side conditions,

I and scaled Hasse diagrams easier to interpret than
anova tables,

especially for complicated families of models.
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Summary

I Stop pretending that the expectation part of the linear
model is a single model with side conditions on its
parameters, and recognize that it is, almost always,
a family of possible models to describe the expectation.

I Recognize the relationships between the different
expectation models being considered,
and show these on a Hasse diagram.

I After the data are collected,
scale the lengths of the edges of the Hasse diagram
to show the relevant mean squares,
as a visual summary of the analysis of variance.

I Use the Hasse diagram, recursively from the top,
to analyse the data and fit a model.
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