		Abstract I	
	How group theory and statistics met in	This talk has two beginnings, both in the 1930s. I. Schur considered the orbits, of a transitive permutation group, on ordered pairs of points. The partition into orbits is very natural, and properties of the partition are helpful in understanding the groups. This is one fore-runner of coherent configurations. R. C. Bose and his collaborators and students generalized earlier work of F. Yates by introducing partially balanced incomplete-block designs for parameters where no balanced incomplete-block design exists. The condition of partial balance ensures that the relevant matrices can be easily inverted by hand, which was important for data analysis in the pre-computer age. This condition relies on the existence of a (symmetric) association scheme.	
	association schemes R. A. Bailey		
	University of St Andrews QMUL (emerita)		
	Queen Mary University of London Symmetry vs Regularity, Pilsen, July 2018		
Bailey	How group theory and statistics met in association schemes ${ }^{\text {a }}$ 1/22 Bailey ${ }^{\text {2/42 }}$		

Abstract II
In the 1950s, D. Mesner worked on association schemes as a
PhD student, later combining with Bose to present what is now
called the Bose-Mesner algebra.
He also devised a new type of association scheme, which he
called negative Latin square type. He found one on 100 points.
In the 1960s Bose made the topic interesting to pure
mathematicians by naming strongly regular graphs.
These proved fruitful in the search for sporadic simple groups,
with the result that D. G. Higman and C. C. Sims rediscovered
Mesner's association scheme on 100 points in 1968 .
Meanwhile, other collaborators of Bose's, including C. R. Nair
and J. N. Srivastava, were generalizing association schemes in
different ways that now fit within the framework of coherent
configurations.

Abstract III

I will conclude by mentioning the series of lectures on coherent configurations that D. G. Higman gave to research students in group theory at Oxford (including me).

It is a shame that some of the people that I mention died before all the connections were understood and acknowledged.

Schur rings

Given a finite group G, its corresponding group ring $\mathbb{Z} G$ consists of all formal sums $\sum_{g \in G} n_{g} g$ with coefficients n_{g} in \mathbb{Z}.
Addition and multiplication in this ring are done in the obvious way.
Suppose that G is partitioned into subsets $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{s}$. Put $\chi_{i}=\sum_{g \in \Delta_{i}} g$ for $i=0, \ldots, s$. If
(i) Δ_{0} consists just of the identity element of G,
(ii) if Δ_{i} is one of the subsets then so is $\left\{g^{-1}: g \in \Delta_{i}\right\}$,
(iii) $\chi_{i} \chi_{j}$ is a linear combination of $\chi_{0}, \ldots, \chi_{s}$ for all i and j, then the subring of $\mathbb{Z} G$ generated by $\left\{\chi_{0}, \ldots, \chi_{s}\right\}$ is called a Schur ring.
Schur (1933) used this idea to prove various results about permutation groups.

Permutation groups

Wielandt's influential book Finite Permutation Groups was published in 1964, based on a German version of 1959. Chapter IV explains Schur rings.
Chapter III explains how to obtain information about a permutation group G on a set Ω by examining the partition of $\Omega \times \Omega$ into orbits of G : sets of the form $\left\{\left(\alpha^{g}, \beta^{g}\right): g \in G\right\}$.
If G is transitive then $\{(\alpha, \alpha): \alpha \in \Omega\}$ is one such orbit.
If G has rank r then it has r orbits on $\Omega \times \Omega$.
Suppose that $|\Omega|=n$ and Γ_{i} is one of these orbits. Its adjacency matrix A_{i} is the $n \times n$ matrix with rows and columns indexed by Ω and entries

$$
A_{i}(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in \Gamma_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Chapter V investigates these matrices.

Properties of the adjacency matrices	Charles Sims and Donald Higman	
Let A_{0}, \ldots, A_{r-1} be the adjacency matrices for the orbits of G on $\Omega \times \Omega$. These satisfy the following conditions. (i) $A_{0}=I \quad$ if G is transitive on Ω; if G has s orbits on Ω then I is a sum of s adjacency matrices. (ii) $\sum_{i} A_{i}=J \quad$ (all-1 matrix). (iii) If A_{i} is an adjacency matrix then so is its transpose A_{i}^{\top}. (iv) If A_{i} and A_{j} are adjacency matrices then their product is an integer-linear-combination of adjacency matrices. (The collection \mathcal{A} of $n \times n$ matrices (over some field) which commute with the permutation matrix P_{g} for every g in G is closed under addition, scalar multiplication and matrix multiplication, so it forms an algebra, the centralizer algebra of G.) G is called generously transitive (Neumann, 1975) if $A_{0}=I$ and every A_{i} is symmetric.		These two group theorists independently continued the technique of considering the orbits of G on $\Omega \times \Omega$ to find out more about G. If A_{i} is symmetric then the corresponding orbit is self-paired. Its pairs (α, β) can be considered as the edges of an undirected graph Γ on which G acts as a group of automorphisms. Sims $(1967,1968)$ used this idea to forge an interplay between graph theory and group theory. On the other hand, Higman thought about the whole partition of $\Omega \times \Omega$, starting with groups of rank 3 in 1964, then concentrating on the matrices in 1967.

Incomplete blocks

I still have 8 varieties and 56 plots,
but now I have to group them into 14 blocks of size 4.
These blocks must be incomplete, because $4<8$.

Every pair of distinct varieties occur together in the same number of blocks, so this block design is balanced.

Balanced incomplete-block designs were introduced by Yates (1936).

Concurrence matrix and information matrix

Given an incomplete-block design for a set \mathcal{T} of v varieties in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i, j)-entry equal to the number of blocks in which treatments i and j both occur (this number is the concurrence of i and j), and the information matrix is $I-(r k)^{-1} \Lambda$.
In order to analyse the data from such an experiment, and also in order to compare potential designs, we need to invert the information matrix.
The constant vectors are in the null space of the information matrix, so we cannot actually invert it.
If M is the information matrix then we calculate

$$
\left(M+v^{-1} J\right)^{-1}-v^{-1} J
$$

where J is the $v \times v$ matrix with every entry 1 .
This can easily be done by hand if the design is balanced.

Dale Mesner

Dale Mesner was a PhD student at Michican State College (later renamed Michigan State University) from 1950 to 1956, supervised by Leo Katz. His thesis was called "An investigation of certain combinatorial properties of partially balanced incomplete-block experimental designs and association schemes, with a detailed study of designs of Latin squares and related types".
One important part of this was the development of the algebra generated by the adjacency matrices of an association scheme. He did not know that R. C. Bose had assigned this topic to one of his own PhD students. When Bose heard about Mesner's work, he suggested collaboration, resulting in the important paper "On linear associative algebras corresponding to association schemes of partially balanced designs" in Annals of Mathematical Statistics 30 in 1959.

The Bose-Mesner algebra		Character table and pseudo-inverses	
The set \mathcal{A} of real linear combinations of the adjacency matrices is called the Bose-Mesner algebra. It consists of real symmetric matrices, is commutative, and has dimension r, where r is the rank of the association scheme. So there are mutually orthogonal subspaces W_{0}, \ldots, W_{r-1} of \mathbb{R}^{Ω} such that if $M \in \mathcal{A}$ then each eigenspace of M is either one of the W_{i} or the direct sum of two or more of W_{0}, \ldots, W_{r-1}. We can always take W_{0} to be the 1-dimensional space spanned by the all-1 vector. Let Q_{i} be the matrix of orthogonal projection onto W_{i}. These eigenprojectors are the minimal idempotents of \mathcal{A}. So we have two natural bases for \mathcal{A} : $\left\{A_{0}, \ldots, A_{r-1}\right\}$ is good for doing addition; $\left\{Q_{0}, \ldots, Q_{r-1}\right\}$ is good for doing multiplication.		Let $\lambda_{i j}$ be the eigenvalue of A_{i} on W_{j}. Then $A_{i}=\sum_{j=0}^{r-1} \lambda_{i j} Q_{j} \quad \text { for } i=0, \ldots, r-1$ The $r \times r$ matrix with entries $\lambda_{i j}$ is called the character table of the association scheme. Its columns are called the characters of the association scheme. (The conventions are slightly different from those in group theory.) If $M=\theta_{1} Q_{1}+\cdots+\theta_{r-1} Q_{r-1}$ (with θ_{i} non-zero for $1 \leq i \leq r-1$) then the pseudo-inverse of M is $\theta_{1}^{-1} Q_{1}+\cdots+\theta_{r-1}^{-1} Q_{r-1}$.	
What else came out of Mesne		ative Latin square type of association scheme	
He was at the University of North Carolina at Chapel Hill (where R. C. Bose worked) from 1964 to 1966. While there, he wrote "Negative Latin square designs", which was published in 1964 as number 410 in the NC Mimeo series of the Institute of Statistics at UNC. It was common to publish preprints in this way at UNC at the time. The Bose-Mesner paper had been published as number 188 in 1958. Mesner himself also published - A note on parameters of PBIB association schemes, number 375, in 1963 (this became a paper in Annals of Mathematical Statistics in 1965) - Sets of disjoint lines in PG $(3, q)$, number 409, in 1964 - On the block structure of certain PBIB designs of partial geometry type, number 457, in 1966.		Dale M. Mesner published "A new family of partially balanced incomplete block designs with some Latin square design properties" in Annals of Mathematical Statistics 38 in April 1967. It had been submitted in July 1964, then revised in August 1966. A 2-class association scheme made from $g-2$ mutually orthogonal Latin squares of order m (where $2 \leq g \leq m$) has $\begin{array}{lcl} \text { vertices } & \text { valency } & \text { triangles per edge } \\ n=m^{2} & a_{1}=g(m-1) & p_{11}^{1}=g^{2}-3 g+m \end{array}$ Mesner's idea was to replace m and g by $-m$ and $-g$ to get an association scheme of negative Latin square type, $\mathrm{NL}_{g}(m)$. $\begin{array}{lcl} \text { vertices } & \text { valency } & \text { triangles per edge } \\ n=m^{2} & a_{1}=g(m+1) & p_{11}^{1}=g^{2}+3 g-m \end{array}$	

Promise in the Introduction		Strongly regular graphs	
$\begin{array}{lcl} \text { vertices } & \text { valency } & \text { triangles per edge } \\ n=m^{2} & a_{1}=g(m+1) & p_{11}^{1}=g^{2}+3 g-m \end{array}$ A new method of construction in Section 4 will provide solutions for $\mathrm{NL}_{1}(4), \mathrm{NL}_{2}(8)$ and $\mathrm{NL}_{2}(9)$. Methods to be presented in later papers give solutions for some of the foregoing as well as for $\mathrm{NL}_{3}(9)$ and $\mathrm{NL}_{2}(10)$. All of these had been done in his 1956 PhD thesis, and in that 1964 number 410 in the NC Mimeo Series. The first lot were done in Section 3, not Section 4. $\mathrm{NL}_{2}(10)$ has 100 vertices, valency 22 and no triangles.		In a 1963 paper in Pacific Journal of Mathematics, R. C. Bose coined the term strongly regular graph to denote the graph corresponding to one associate class of a two-class association scheme. The time was ripe to capture the interest of pure combinatorialists and algebraists. Hoffman and Singleton had defined Moore graphs in 1960.	
Bailey How group theory and statistics met in association schemes	23/42 Bailey	How group theory and statistics met in association schemes	24/4

Higman-Sims graph and Higman-Sims group		New group; apparently new graph
Don Higman and Charles Sims were at this conference, and were inspired by this talk. Sims (Bannai et al., 2009) said that they discussed ideas before, during and after the conference dinner, and by the early hours of the next morning had soon constructed a new sporadic simple group, now called the Higman-Sims group, as a subgroup of index 2 in the automorphism group of a strongly regular graph on 100 vertices with valency 22 and no triangles. They were able to construct this by starting with the Steiner system $\mathfrak{S}(3,6,22)$, so they did it with less effort than Mesner. The vertices are ∞, the 22 points and the 77 blocks. ∞ is joined to the 22 points. Each point is joined to ∞ and the 21 blocks containing it. Each block is joined to the 6 points it contains and the 16 blocks disjoint from it. If two blocks are disjoint then no block is disjoint from both.		Higman and Sims published their results in Mathematische Zeitschrift in 1968. Many people now call this strongly regular graph the Higman-Sims graph. Higman first referred to strongly regular graphs in a 1970 paper, submitted in July 1969. However, in recent years, it seems that more online references are also crediting Dale Mesner with this graph. Thanks to Edmund Roberston for showing me his article about this which will appear in Mactutor, and to Colin Campbell for showing me his hard copy of the proceedings of that conference.

Who knew about this part of Mesner's work?

According to Jajcayová and Jajcay (2002),
J. J. Seidel at Eindhoven saw the thesis in 1968.

Goethals and Seidel (1970) mention negative-Latin-square graphs, referring to Mesner's 1967 paper but not apparently noticing his claim to have constructed $\mathrm{NL}_{2}(10)$.
Cameron, Goethals and Seidel (1978) include negative Latin square graphs in their classification of strongly regular graphs with strongly regular subconstituents.
Mesner visited Eindhoven in 1983-1984.
One outcome was a joint paper with A. E. Brouwer on strongly regular graphs in 1985.
The "bible" on Distance-Regular Graphs by Brouwer, Cohen and Neumaier, was published in 1989. It refers to Mesner's 1967 paper, but does not associate him with the Higman-Sims graph.

More details about what Dale Mesner did, and his later life

- T. B. Jajcayová and R. Jajcay: On the contributions of Dale Marsh Mesner. Bulletin of the Institute of Combinatorics and its Applications 36 (2002), 46-52.
- T. B. Jajcayová, R. Jajcay and E.S. Kramer: The Life and Mathematics of Dale Marsh Mesner 1923-2009. Bulletin of the Institute of Combinatorics and its Applications 59 (2010), 9-30.
- Eiichi Bannai, Robert L. Griess, Jr., Cheryl E. Praeger and Leonard Scott: The Mathematics of Donald Gordon Higman. Michigan Mathematical Journal 58 (2009), 3-30.
- Mikhail H. Klin and Andrew J. Woldar: The strongly regular graph with parameters (100,22,0,6): Hidden history and beyond. Dedicated to the memory of Dale Marsh Mesner (1923-2009). Acta Universitatis Matthiae Belii, series Mathematics, 2017, 19-76.

References: Experimental design II		Experimental design III	
- R. C. Bose and K. R. Nair: Partially balanced incomplete block designs. Sankhā 4 (1939), 337-372. - R. C. Bose and T. Shimamoto: Classification and analysis of partially balanced incomplete block designs with two associate classes. Journal of the American Statistical Association 47 (1952), 151-184. - R. C. Bose and D. M. Mesner: On linear associative algebras corresponding to association schemes of partially balanced designs. Annals of Mathematical Statistics 30 (1959), 21-38. - D. M. Mesner: A note on the parameters of PBIB association schemes. Annals of Mathematical Statistics 36 (1965), 331-336. - D. M. Mesner: A new family of partially balanced incomplete block designs with some Latin square design properties. Annals of Mathematical Statistics 38 (1967), 571-581.		- C. R. Nair: A new class of designs. Journal of the American Statistical Association 59 (1964), 817-833. - R. C. Bose and J. N. Srivastava: Mathematical theory of factorial designs. Bulletin of the International Statistical Institute 40 (1963), 780-794. - J. P. Morgan, Subir Ghosh and A. M. Dean: J. N. Srivastava and experimental design. Journal of Statistical Planning and Inference 144 (2014), 3-18.	

References: Combinatorics

- A. J. Hoffman and R. R. Singleton: One Moore graphs of diameter two and three. IBM Journal of Research and Development 4 (1960), 497-504.
- R. C. Bose: Strongly regular graphs, partial geometries and partially balanced designs. Pacific Journal of Mathematics 13 (1963), 380-419.
- J.-M. Goethals and J. J. Seidel: Strongly regular graphs derived from combinatorial designs. Canadian Journal of Mathematics 22 (1970), 597-614.
- P. J. Cameron, J.-M. Goethals and J. J. Seidel: Strongly regular graphs having strongly regular subconstituents. Journal of Algebra 55 (1978), 257-280.
- A. E. Brouwer and D. M. Mesner: The connectivity for strongly regular graphs. European Journal of Combinatorics 6 (1985), 215-216.
- A. E. Brouwer, A. M. Cohen and A. Neumeier: Distance-Regular Graphs, Springer, Berlin, 1989.
- D. G. Higman: Combinatorial Considerations about Permutation Groups, Mathematical Institute, Oxford, 1971.
- D. G. Higman: Coherent configurations. I. Ordinary representation theory. Geometriae Dedicata 4 (1975), 1-32.
- D. G. Higman: Coherent configurations. II. Weights. Geometriae Dedicata 5 (1976), 413-424.

