Designs for half-diallel experiments

R. A. Bailey
University of St Andrews

Conference on Theoretical and Computational Algebra, Pocinho, 6 July 2023
Joint work with Peter Cameron (University of St Andrews) and Dário Ferreira, Sandra S. Ferreira and Célia Nunes (Universidade de Beira Interior)

A walk around my subject

A combinatorial structure on a finite set \rightarrow

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.
How should we design an experiment with certain numbers specified? \rightarrow

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.
How should we design an experiment with certain numbers specified? \rightarrow
Assumptions about some relevant random variables \rightarrow

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.
How should we design an experiment with certain numbers specified? \rightarrow
Assumptions about some relevant random variables \rightarrow Eigenspaces, so back to linear algebra.

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.
How should we design an experiment with certain numbers specified? \rightarrow
Assumptions about some relevant random variables \rightarrow
Eigenspaces, so back to linear algebra.
I will describe two different desirable statistical conditions that translate easily into combinatorics and linear algebra.

A walk around my subject

A combinatorial structure on a finite set \rightarrow
Commutative linear algebra over a finite-dimensional real vector space.
How should we design an experiment with certain numbers specified? \rightarrow
Assumptions about some relevant random variables \rightarrow
Eigenspaces, so back to linear algebra.
I will describe two different desirable statistical conditions that translate easily into combinatorics and linear algebra.

I will illustrate each of these conditions when applied to the same two combinatorial objects.

Strongly regular graphs

Let Ω be a finite set of experimental units (for example, plots in a field).
For this talk, the combinatorial structure is a graph Γ with vertex-set Ω.

Strongly regular graphs

Let Ω be a finite set of experimental units (for example, plots in a field).
For this talk, the combinatorial structure is a graph Γ with vertex-set Ω. This graph is regular if there is some constant d such that every vertex is contained in d edges.

Strongly regular graphs

Let Ω be a finite set of experimental units (for example, plots in a field).
For this talk, the combinatorial structure is a graph Γ with vertex-set Ω. This graph is regular if there is some constant d such that every vertex is contained in d edges.
Three $\Omega \times \Omega$ real matrices associated with Γ :

- the adjacency matrix A has $A_{\alpha, \beta}=1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix I;
- the all-1 matrix J.

Strongly regular graphs

Let Ω be a finite set of experimental units (for example, plots in a field).
For this talk, the combinatorial structure is a graph Γ with vertex-set Ω. This graph is regular if there is some constant d such that every vertex is contained in d edges.
Three $\Omega \times \Omega$ real matrices associated with Γ :

- the adjacency matrix A has $A_{\alpha, \beta}=1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix I;
- the all-1 matrix J.

The graph Γ is strongly regular if A^{2} is a linear combination of A, I and J but not all pairs are edges.

Strongly regular graphs

Let Ω be a finite set of experimental units (for example, plots in a field).
For this talk, the combinatorial structure is a graph Γ with vertex-set Ω. This graph is regular if there is some constant d such that every vertex is contained in d edges.
Three $\Omega \times \Omega$ real matrices associated with Γ :

- the adjacency matrix A has $A_{\alpha, \beta}=1$ if $\{\alpha, \beta\}$ is an edge, and all other entries zero;
- the identity matrix I;
- the all-1 matrix J.

The graph Γ is strongly regular if A^{2} is a linear combination of A, I and J but not all pairs are edges.
In this case, the real vector space \mathbb{R}^{Ω} is the orthogonal direct sum of subspaces W_{0}, W_{1} and W_{2}, each of which is (contained in) an eigenspace of A and an eigenspace of J, where W_{0} is the one-dimensional subspace spanned by the all-1 vector \mathbf{u}.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.
Assume that

$$
\operatorname{Cov}\left(Y_{\alpha}, Y_{\beta}\right)=\left\{\begin{array}{cl}
\sigma^{2} & \text { if } \alpha=\beta \\
\rho_{1} \sigma^{2} & \text { if } \alpha \neq \beta \text { and }\{\alpha, \beta\} \text { is an edge of } \Gamma \\
\rho_{2} \sigma^{2} & \text { otherwise. }
\end{array}\right.
$$

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.
Assume that

$$
\operatorname{Cov}\left(Y_{\alpha}, Y_{\beta}\right)=\left\{\begin{array}{cl}
\sigma^{2} & \text { if } \alpha=\beta \\
\rho_{1} \sigma^{2} & \text { if } \alpha \neq \beta \text { and }\{\alpha, \beta\} \text { is an edge of } \Gamma \\
\rho_{2} \sigma^{2} & \text { otherwise. }
\end{array}\right.
$$

The eigenspaces of $\operatorname{Cov}(Y)$ are W_{0}, W_{1} and W_{2}.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.
Assume that

$$
\operatorname{Cov}\left(Y_{\alpha}, Y_{\beta}\right)=\left\{\begin{array}{cl}
\sigma^{2} & \text { if } \alpha=\beta \\
\rho_{1} \sigma^{2} & \text { if } \alpha \neq \beta \text { and }\{\alpha, \beta\} \text { is an edge of } \Gamma \\
\rho_{2} \sigma^{2} & \text { otherwise. }
\end{array}\right.
$$

The eigenspaces of $\operatorname{Cov}(Y)$ are W_{0}, W_{1} and W_{2}.
Call the corresponding eigenvalues γ_{0}, γ_{1} and γ_{2}.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.
Assume that

$$
\operatorname{Cov}\left(Y_{\alpha}, Y_{\beta}\right)=\left\{\begin{array}{cl}
\sigma^{2} & \text { if } \alpha=\beta \\
\rho_{1} \sigma^{2} & \text { if } \alpha \neq \beta \text { and }\{\alpha, \beta\} \text { is an edge of } \Gamma \\
\rho_{2} \sigma^{2} & \text { otherwise. }
\end{array}\right.
$$

The eigenspaces of $\operatorname{Cov}(Y)$ are W_{0}, W_{1} and W_{2}.
Call the corresponding eigenvalues γ_{0}, γ_{1} and γ_{2}.
We do not know the values of γ_{0}, γ_{1} and γ_{2} in advance.

Design question and statistical issues

We have a set \mathcal{T} of t treatments. We need to choose a design, which is a function $f: \Omega \rightarrow \mathcal{T}$ allocating treatment $f(\omega)$ to experimental unit ω. How should we choose f ?
For each ω in Ω, there is a random variable Y_{ω}, which we will measure.
Assume that, for each treatment i, there is an unknown constant τ_{i} such that $\mathbb{E}\left(Y_{\omega}\right)=\tau_{i}$ if $f(\omega)=i$.
Assume that

$$
\operatorname{Cov}\left(Y_{\alpha}, Y_{\beta}\right)=\left\{\begin{array}{cl}
\sigma^{2} & \text { if } \alpha=\beta \\
\rho_{1} \sigma^{2} & \text { if } \alpha \neq \beta \text { and }\{\alpha, \beta\} \text { is an edge of } \Gamma \\
\rho_{2} \sigma^{2} & \text { otherwise. }
\end{array}\right.
$$

The eigenspaces of $\operatorname{Cov}(Y)$ are W_{0}, W_{1} and W_{2}.
Call the corresponding eigenvalues γ_{0}, γ_{1} and γ_{2}.
We do not know the values of γ_{0}, γ_{1} and γ_{2} in advance.
When is the choice of best design not affected by the values of γ_{0}, γ_{1} and γ_{2} ?

Two different desirable statistical conditions

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.

Two different desirable statistical conditions

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Solution Allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{i, j\}$ of distinct treatments, there are λ edges with i at one end and j at the other.

Two different desirable statistical conditions

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Solution Allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{i, j\}$ of distinct treatments, there are λ edges with i at one end and j at the other.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.

Two different desirable statistical conditions

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Solution Allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{i, j\}$ of distinct treatments, there are λ edges with i at one end and j at the other.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.
Solution The subspace V_{T} of \mathbb{R}^{Ω} consisting of vectors which are constant on each treatment can be orthogonally decomposed as

$$
W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right) .
$$

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k. Thus Γ consists of b disjoint copies of the complete graph on k vertices.

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on k vertices.
Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on k vertices.
Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
If $\gamma_{1} \neq \gamma_{2}$ and $k<t$ then the only way to achieve this is to use a balanced incomplete-block design.

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on k vertices.
Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
If $\gamma_{1} \neq \gamma_{2}$ and $k<t$ then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{i, j\}$ of distinct treatments, there are λ blocks in which i and j both occur.

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on k vertices.
Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
If $\gamma_{1} \neq \gamma_{2}$ and $k<t$ then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{i, j\}$ of distinct treatments, there are λ blocks in which i and j both occur. If $k=t$ then each block must contain every treatment.

Combinatorial Structure 1: Partition into Blocks

This is probably the best-known combinatorial structure in Design of Experiments.
The set Ω is partitioned into b blocks, each of size k.
Thus Γ consists of b disjoint copies of the complete graph on k vertices.
Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
If $\gamma_{1} \neq \gamma_{2}$ and $k<t$ then the only way to achieve this is to use a balanced incomplete-block design. This means that each treatment occurs no more than once in each block, and there is an integer λ such that, for all pairs $\{i, j\}$ of distinct treatments, there are λ blocks in which i and j both occur.
If $k=t$ then each block must contain every treatment.
If $k>t$ then something slightly more complicated is needed.

An example of a balanced incomplete-block design

Here is a balanced incomplete-block design with $b=14, k=4$, $t=8$ and $\lambda=3$.

1	3	5	7	2	4	6	8	
1	2	5	6	3	4	7	8	
1	2	3	4	5	6	7	8	
1	4	5	8	2	3	6	7	
1	3	6	8	2	4	5	7	
1	2	7	8	3	4	5	6	
1	4	6	7	2	3	5	8	

A different solution when $k<t$

Previously I said that, in order to satisfy Condition 1 when $k<t$, no treatment can occur more than once in any block. That was a lie.

A different solution when $k<t$

Previously I said that, in order to satisfy Condition 1 when $k<t$, no treatment can occur more than once in any block. That was a lie.
Here is an example with $b=7, k=3, t=5$ and $\lambda=2$.

| 1 | 1 | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 3 4
 1 3 5 | 1 4 5
 2 3 3 5 | 2 4 |

A different solution when $k<t$

Previously I said that, in order to satisfy Condition 1 when $k<t$, no treatment can occur more than once in any block. That was a lie.
Here is an example with $b=7, k=3, t=5$ and $\lambda=2$.

| 1 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1 3 4
 1 1 3 5 2 3 5 4 5 2
 2 4 5 | |

There are many different optimality criteria for designs for experiments. This design is actually the best on one of these criteria.

A different solution when $k<t$

Previously I said that, in order to satisfy Condition 1 when $k<t$, no treatment can occur more than once in any block. That was a lie.
Here is an example with $b=7, k=3, t=5$ and $\lambda=2$.

1	1	2					
	1 3 4	1 3 5 1 4	2 3	5		2	4
:---	:---						

There are many different optimality criteria for designs for experiments. This design is actually the best on one of these criteria.
I don't want to get bogged down in the statistical details, so I will say no more about this here.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k. Let V_{B} be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k. Let V_{B} be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.
Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{B} \cap W_{0}^{\perp}$ and $W_{2}=V_{B}^{\perp}$.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k. Let V_{B} be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.
Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{B} \cap W_{0}^{\perp}$ and $W_{2}=V_{B}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k. Let V_{B} be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.
Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{B} \cap W_{0}^{\perp}$ and $W_{2}=V_{B}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.
Since the treatment subspace V_{T} contains W_{0}, there are three possibilities.

Partition into Blocks: the other Condition

The set Ω is partitioned into b blocks, each of size k. Let V_{B} be the b-dimensional subspace of \mathbb{R}^{Ω} consisting of vectors which are constant on each block.
Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{B} \cap W_{0}^{\perp}$ and $W_{2}=V_{B}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.
Since the treatment subspace V_{T} contains W_{0}, there are three possibilities.
(a) $V_{T} \leq W_{0} \oplus W_{2}$.
(b) $V_{T} \leq W_{0} \oplus W_{1}$.
(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

There are k treatments, and each occurs exactly once in each block. This is called a complete-block design.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

There are k treatments, and each occurs exactly once in each block. This is called a complete-block design. For example, when $b=4$ and $k=3$ we get

1	2	3				
1	2	3				
1	2	3	\quad	1	2	3
:---	:---	:---				

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

There are k treatments, and each occurs exactly once in each block. This is called a complete-block design.
For example, when $b=4$ and $k=3$ we get

1	2	3		
1	2	3		
1	2	3	\quad	1
:---				

More generally, any subset of treatments may be merged into a single treatment. For example,

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 2 \\
\hline
\end{array}
$$

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b / t whole blocks.

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b / t whole blocks. For example, when $b=4, k=3$ and $t=2$ we get

| A | A | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | B | B | B |
| :--- | :--- | :--- | :--- |
| A | A | A | | B |
| :--- |

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

There are t treatments, where t divides b. Each treatment is applied to every plot in each of b / t whole blocks. For example, when $b=4, k=3$ and $t=2$ we get
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline A & A & A \\
\hline\end{array}
$$ \begin{array}{|l|l|l|l|}\hline B \& B \& B

\hline A \& A \& A

\hline\end{array} \quad $$
\begin{array}{|l}\hline\end{array}
$$\right) B\)| B |
| :--- |

Such designs are used when management constraints make it impractical to apply the treatments to the individual plots.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
We combine the two previous approaches.
The treatment set is $\mathcal{T}_{1} \times \mathcal{T}_{2}$,
where $\left|\mathcal{T}_{1}\right|=t_{1}$, which divides b, and $\left|\mathcal{T}_{2}\right|=k$.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
We combine the two previous approaches.
The treatment set is $\mathcal{T}_{1} \times \mathcal{T}_{2}$,
where $\left|\mathcal{T}_{1}\right|=t_{1}$, which divides b, and $\left|\mathcal{T}_{2}\right|=k$.
Each item from \mathcal{T}_{2} is applied to one plot per block.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
We combine the two previous approaches.
The treatment set is $\mathcal{T}_{1} \times \mathcal{T}_{2}$,
where $\left|\mathcal{T}_{1}\right|=t_{1}$, which divides b, and $\left|\mathcal{T}_{2}\right|=k$.
Each item from \mathcal{T}_{2} is applied to one plot per block.
Each item from \mathcal{T}_{1} is applied to b / t_{1} whole blocks.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
We combine the two previous approaches.
The treatment set is $\mathcal{T}_{1} \times \mathcal{T}_{2}$,
where $\left|\mathcal{T}_{1}\right|=t_{1}$, which divides b, and $\left|\mathcal{T}_{2}\right|=k$.
Each item from \mathcal{T}_{2} is applied to one plot per block.
Each item from \mathcal{T}_{1} is applied to b / t_{1} whole blocks.
For example, when $b=4, k=3, t=6$ and $t_{1}=2$ we get

| $A 1$ | $A 2$ | $A 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $B 1$ | $B 2$ | $B 3$ |
| $A 1$ | $A 2$ | $A 3$ |
| $B 1$ | $B 2$ | $B 3$ |

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
We combine the two previous approaches.
The treatment set is $\mathcal{T}_{1} \times \mathcal{T}_{2}$,
where $\left|\mathcal{T}_{1}\right|=t_{1}$, which divides b, and $\left|\mathcal{T}_{2}\right|=k$.
Each item from \mathcal{T}_{2} is applied to one plot per block.
Each item from \mathcal{T}_{1} is applied to b / t_{1} whole blocks.
For example, when $b=4, k=3, t=6$ and $t_{1}=2$ we get

| $A 1$ | $A 2$ | $A 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | | $B 1$ | $B 2$ | $B 3$ |
| :--- | :--- | :--- | :--- |
| $A 1$ | $A 2$ | $A 3$ |
| $B 1$ | $B 2$ | $B 3$ |

These are called split-plot designs.

Combinatorial Structure 2: Half-Diallel

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.

Combinatorial Structure 2: Half-Diallel

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines. In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.

Combinatorial Structure 2: Half-Diallel

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines. In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.
This structure is also useful in experiments where pairs of individuals are required to complete some task, with both individuals playing the same role.

Combinatorial Structure 2: Half-Diallel

Diallel experiments are traditionally used in plant breeding. In a full diallel experiment, the experimental units are all ordered crosses between m parental lines.
In situtations where the gender of the parent is irrelevant, it is efficient to use half-diallel experiments, in which the experimental units consist of all unordered crosses between m parental lines, excluding self-crosses.
This structure is also useful in experiments where pairs of individuals are required to complete some task, with both individuals playing the same role.
For example, the aim of the experiment might be to compare different methods for researchers to collaborate when they are unable to meet face-to-face, such as email, online meetings, old-fashioned letters, telephone calls with and without video.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.
These form the vertices of the graph Γ.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.
These form the vertices of the graph Γ.
There is an edge between two distinct vertices if and only if they have an individual in common.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.
These form the vertices of the graph Γ.
There is an edge between two distinct vertices if and only if they have an individual in common.
Thus every vertex is joined to $2(m-2)$ other vertices.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.
These form the vertices of the graph Γ.
There is an edge between two distinct vertices if and only if they have an individual in common.
Thus every vertex is joined to $2(m-2)$ other vertices.
This is called the triangular graph $T(m)$.

Combinatorial Structure 2: more detail

Now the set Ω consists of all unordered pairs from the set $\{1,2, \ldots, m\}$ of m distinct individuals, where $m \geq 4$.
These form the vertices of the graph Γ.
There is an edge between two distinct vertices if and only if they have an individual in common.
Thus every vertex is joined to $2(m-2)$ other vertices.
This is called the triangular graph $T(m)$.
It is strongly regular, and its adjacency matrix A satisfies

$$
A^{2}=(2 m-8) I+(m-6) A+4 J
$$

How to picture the elements of Ω

When $m=6$ the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

How to picture the elements of Ω

When $m=6$ the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5
2					
3					
4					
5					
6					

How to picture the elements of Ω

When $m=6$ the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5				
2									
3									
4									
5			$*$						
6									

$$
*=\{3,5\}
$$

How to picture the elements of Ω

When $m=6$ the set Ω has 15 elements, which can be shown as the cells of a 6×6 square lying below the main diagonal.

	1	2	3	4	5		
2							
3	\circ	\circ					
4			\circ				
5	\circ	\circ	$*$	\circ			
6			\circ		\circ		

$$
*=\{3,5\}
$$

$\circ=$ vertices joined to vertex $\{3,5\}$

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Apologies for the confusing notation.
For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B, \ldots.

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Apologies for the confusing notation.
For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B, \ldots
We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Apologies for the confusing notation.
For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B, \ldots.
We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.
If m is odd and $t=m$ we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once).

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Apologies for the confusing notation.
For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B, \ldots.
We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.
If m is odd and $t=m$ we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once).
Then each treatment occurs on $(m-1) / 2$ plots, and $\lambda=m-1$.

Triangular graph: Condition 1

Condition 1 We want the variance $V_{i j}$ of the estimator of $\tau_{i}-\tau_{j}$ to be the same for all pairs $\{i, j\}$ of distinct treatments.
Apologies for the confusing notation.
For this combinatorial structure, i and j denote individuals, so treatments are usually denoted A, B, \ldots.
We need to allocate the treatments to the vertices of Γ in such a way that, for all pairs $\{A, B\}$ of distinct treatments, there are λ edges with A at one end and B at the other.
If m is odd and $t=m$ we can do this by using a symmetric, idempotent Latin square of order m and omitting the main diagonal and plots above the main diagonal (idempotent means that this diagonal contains each letter once).
Then each treatment occurs on $(m-1) / 2$ plots, and $\lambda=m-1$. In fact, each treatment misses one individual and occurs once with every other individual.

An example with $m=7$

	1	2	3	4	5	6	
2	B						
3	C	D					
4	D	E	F				
5	E	F	G	A			
6	F	G	A	B	C		
7	G	A	B	C	D	E	

An example with $m=7$

	1	2	3	4	5	6	
2	B						
3	C	D					
4	D	E	F				
5	E	F	G	A			
6	F	G	A	B	C		
7	G	A	B	C	D	E	

Treatment A occurs once with every individual except individual 1.

An example with $m=7$

	1	2	3	4	5	6	
2	B						
3	C	D					
4	D	E	F				
5	E	F	G	A			
6	F	G	A	B	C		
7	G	A	B	C	D	E	

Treatment A occurs once with every individual except individual 1.

For strongly regular graphs in general, such designs are called balanced colourings of strongly regular graphs.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$. For $i=1, \ldots, m$, let \mathbf{v}_{i} be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let $V_{\text {ind }}$ be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$. For $i=1, \ldots, m$, let \mathbf{v}_{i} be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let $V_{\text {ind }}$ be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{\text {ind }} \cap W_{0}^{\perp}$ and $W_{2}=V_{\text {ind }}^{\perp}$.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$. For $i=1, \ldots, m$, let \mathbf{v}_{i} be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let $V_{\text {ind }}$ be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{\text {ind }} \cap W_{0}^{\perp}$ and $W_{2}=V_{\text {ind }}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$. For $i=1, \ldots, m$, let \mathbf{v}_{i} be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let $V_{\text {ind }}$ be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{\text {ind }} \cap W_{0}^{\perp}$ and $W_{2}=V_{\text {ind }}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j. Since the treatment subspace V_{T} contains W_{0}, there are three possibilities.

Triangular Graph: the other Condition

The set Ω consists of all unordered pairs from $\{1,2, \ldots, m\}$. For $i=1, \ldots, m$, let \mathbf{v}_{i} be the vector taking the value 1 on each pair that includes individual i and value 0 elsewhere. Let $V_{\text {ind }}$ be the m-dimensional subspace of \mathbb{R}^{Ω} spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. Then $W_{0}=\langle\mathbf{u}\rangle, W_{1}=V_{\text {ind }} \cap W_{0}^{\perp}$ and $W_{2}=V_{\text {ind }}^{\perp}$.
Condition 2 We want the linear combination of the Y_{ω} (for $\omega \in \Omega$) which gives the best estimate of $\tau_{i}-\tau_{j}$ (correct on average, smallest variance) to be the same as the best estimator when $\gamma_{0}=\gamma_{1}=\gamma_{2}$. This is the difference between the averages for plots with treatment i and those with treatment j. Since the treatment subspace V_{T} contains W_{0}, there are three possibilities.
(a) $V_{T} \leq W_{0} \oplus W_{2}$.
(b) $V_{T} \leq W_{0} \oplus W_{1}$.
(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

For treatment A, let $p_{A i}$ be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $p_{A i}=p_{A j}=p_{A}$ for all individuals i and j;

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

For treatment A, let $p_{A i}$ be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $p_{A i}=p_{A j}=p_{A}$ for all individuals i and j;
- treatment A occurs on $m p_{A} / 2$ pairs, and so $m p_{A}$ is even for all treatments A;

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

For treatment A, let $p_{A i}$ be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $p_{A i}=p_{A j}=p_{A}$ for all individuals i and j;
- treatment A occurs on $m p_{A} / 2$ pairs, and so $m p_{A}$ is even for all treatments A;
- if $p_{A}=1$ then m is even and A occurs on $m / 2$ pairs;

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

For treatment A, let $p_{A i}$ be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $p_{A i}=p_{A j}=p_{A}$ for all individuals i and j;
- treatment A occurs on $m p_{A} / 2$ pairs, and so $m p_{A}$ is even for all treatments A;
- if $p_{A}=1$ then m is even and A occurs on $m / 2$ pairs;
- if this is true for all treatments then $t=m-1$.

Solution (a) for Condition 2

(a) $V_{T} \leq W_{0} \oplus W_{2}$.

For treatment A, let $p_{A i}$ be the number of pairs including individual i on which A occurs. We were able to show that if (a) holds then

- $p_{A i}=p_{A j}=p_{A}$ for all individuals i and j;
- treatment A occurs on $m p_{A} / 2$ pairs, and so $m p_{A}$ is even for all treatments A;
- if $p_{A}=1$ then m is even and A occurs on $m / 2$ pairs;
- if this is true for all treatments then $t=m-1$.

In this case, we can do this by using a symmetric Latin square of order m with a single letter on the main diagonal and omitting the main diagonal and plots above the main diagonal.

An example with $m=8$

	1	2	3	4	5	6	7
2	C						
3	D	E					
4	E	F	G				
5	F	G	A	B			
6	G	A	B	C	D		
7	A	B	C	D	E	F	
8	B	D	F	A	C	E	G

An example with $m=8$

	1	2	3	4	5	6	7
2	C						
3	D	E					
4	E	F	G				
5	F	G	A	B			
6	G	A	B	C	D		
7	A	B	C	D	E	F	
8	B	D	F	A	C	E	G

Each treatment occurs exactly once with each individual.

An example with $m=8$

	1	2	3	4	5	6	7
2	C						
3	D	E					
4	E	F	G				
5	F	G	A	B			
6	G	A	B	C	D		
7	A	B	C	D	E	F	
8	B	D	F	A	C	E	G

Each treatment occurs exactly once with each individual. Just as with complete-block designs, any subset of treatments may be merged into a single treatment.

Solution (a) for Condition 2 when m is odd

When m is odd, p_{A} must even for every treatment A.

Solution (a) for Condition 2 when m is odd

When m is odd, p_{A} must even for every treatment A. If $p_{A}=2$ for every treatment A then $m=2 t+1$.

Solution (a) for Condition 2 when m is odd

When m is odd, p_{A} must even for every treatment A.
If $p_{A}=2$ for every treatment A then $m=2 t+1$.
Now label the treatments by $\{1,2, \ldots, t\}$.
The treatment applied to the pair $\{i, j\}$ is whichever is smaller of the differences $i-j$ and $j-i$ modulo m.

Solution (a) for Condition 2 when m is odd

When m is odd, p_{A} must even for every treatment A.
If $p_{A}=2$ for every treatment A then $m=2 t+1$.
Now label the treatments by $\{1,2, \ldots, t\}$.
The treatment applied to the pair $\{i, j\}$ is whichever is smaller of the differences $i-j$ and $j-i$ modulo m.
When $m=9$ this gives

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

There is essentially only one solution.
There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs.

Solution (b) for Condition 2

(b) $V_{T} \leq W_{0} \oplus W_{1}$.

There is essentially only one solution.
There are precisely two treatments, say A and B. There is one special individual i. Treatment A is applied to all pairs containing i, and treatment B is applied to all other pairs. When $m=9$ this gives

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and
$V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$.
Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$. Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.
- If $s_{i}=2$ then \mathcal{T}_{i} has a single treatment with replication 1 , so avoid this case.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$. Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.
- If $s_{i}=2$ then \mathcal{T}_{i} has a single treatment with replication 1 , so avoid this case.
- If $s_{i}=3$ then the only way to avoid replication 1 is to have $t_{i}=1$.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$. Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.
- If $s_{i}=2$ then \mathcal{T}_{i} has a single treatment with replication 1 , so avoid this case.
- If $s_{i}=3$ then the only way to avoid replication 1 is to have $t_{i}=1$.
- If $n=2$ and $s_{1}=1$ then make sure that $t_{2}>1$, to avoid solution (b).

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$. Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.
- If $s_{i}=2$ then \mathcal{T}_{i} has a single treatment with replication 1 , so avoid this case.
- If $s_{i}=3$ then the only way to avoid replication 1 is to have $t_{i}=1$.
- If $n=2$ and $s_{1}=1$ then make sure that $t_{2}>1$, to avoid solution (b).
- If $i<j$ then let $t_{i j}$ be any common divisor of s_{i} and s_{j}. Make a set $\mathcal{T}_{i j}$ of $t_{i j}$ treatments. Allocate these to the cells in the rectangle $\mathcal{S}_{j} \times \mathcal{S}_{i}$ in such a way that all treatments appear equally often in each row and equally often in each column.

Solution (c) for Condition 2

(c) $V_{T} \cap W_{1}$ and $V_{T} \cap W_{2}$ are both non-zero, and $V_{T}=W_{0} \oplus\left(V_{T} \cap W_{1}\right) \oplus\left(V_{T} \cap W_{2}\right)$. Here is a very general solution.

- Partition the set of individuals into n sorts $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of size s_{1}, \ldots, s_{n}, where $n \geq 2$.
- If $s_{i}>1$ then put a solution (a) design on pairs of individuals of sort i, using t_{i} treatments forming a set \mathcal{T}_{i}.
- If $s_{i}=2$ then \mathcal{T}_{i} has a single treatment with replication 1 , so avoid this case.
- If $s_{i}=3$ then the only way to avoid replication 1 is to have $t_{i}=1$.
- If $n=2$ and $s_{1}=1$ then make sure that $t_{2}>1$, to avoid solution (b).
- If $i<j$ then let $t_{i j}$ be any common divisor of s_{i} and s_{j}. Make a set $\mathcal{T}_{i j}$ of $t_{i j}$ treatments. Allocate these to the cells in the rectangle $\mathcal{S}_{j} \times \mathcal{S}_{i}$ in such a way that all treatments appear equally often in each row and equally often in each column.
- If $i<j$ and $s_{i}=s_{j}=1$ then $\mathcal{T}_{i j}$ has a single treatment with replication 1, so avoid this case.

Theorem about this solution

Theorem
For $i=1, \ldots, n$,
let \mathbf{w}_{i} be the vector whose entries are
$\left\{\begin{array}{l}0 \text { on all pairs which do not involve an individual of sort } i \\ 1 \text { on all pairs which involve a single individual of sort } i \\ 2 \text { on all pairs which involve two indiviudals of sort } i\end{array}\right.$

Theorem about this solution

Theorem
For $i=1, \ldots, n$,
let \mathbf{w}_{i} be the vector whose entries are
$\begin{cases}0 & \text { on all pairs which do not involve an individual of sort } i \\ 1 & \text { on all pairs which involve a single individual of sort } i \\ 2 & \text { on all pairs which involve two indiviudals of sort } i\end{cases}$
Then

- The vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ span an n-dimensional subspace of $V_{T} \cap\left(W_{0} \oplus W_{1}\right)$.

Theorem about this solution

Theorem
For $i=1, \ldots, n$,
let \mathbf{w}_{i} be the vector whose entries are
$\begin{cases}0 & \text { on all pairs which do not involve an individual of sort } i \\ 1 & \text { on all pairs which involve a single individual of sort } i \\ 2 & \text { on all pairs which involve two indiviudals of sort } i\end{cases}$
Then

- The vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ span an n-dimensional subspace of $V_{T} \cap\left(W_{0} \oplus W_{1}\right)$.
- If $\mathbf{v} \in V_{T}$ is orthogonal to \mathbf{w}_{i} for $i=1, \ldots, n$ then $\mathbf{v} \in W_{2}$.

An example with two sorts

Here $m=9, n=2, s_{1}=3, s_{2}=6$ and $t=9$.

	1	2	3	4	5	6	7	8
2	A							
3	A	A						
4	B	C	D					
5	B	C	D	E				
6	D	B	C	F	I			
7	D	B	C	G	H	E		
8	C	D	B	H	F	G	I	
9	C	D	B	I	G	H	F	E

An example with two sorts

Here $m=9, n=2, s_{1}=3, s_{2}=6$ and $t=9$.

	1	2	3	4	5	6	7	8
2	A							
3	A	A						
4	B	C	D					
5	B	C	D	E				
6	D	B	C	F	I			
7	D	B	C	G	H	E		
8	C	D	B	H	F	G	I	
9	C	D	B	I	G	H	F	E

$\mathcal{S}_{1}=\{1,2,3\}, \mathcal{T}_{1}=\{A\}$ and $t_{1}=1$.

An example with two sorts

Here $m=9, n=2, s_{1}=3, s_{2}=6$ and $t=9$.

	1	2	3	4	5	6	7	8
2	A							
3	A	A						
4	B	C	D					
5	B	C	D	E				
6	D	B	C	F	I			
7	D	B	C	G	H	E		
8	C	D	B	H	F	G	I	
9	C	D	B	I	G	H	F	E

$\mathcal{S}_{1}=\{1,2,3\}, \mathcal{T}_{1}=\{A\}$ and $t_{1}=1$.
$\mathcal{S}_{2}=\{4,5,6,7,8,9\}, \mathcal{T}_{2}=\{E, F, G, H, I\}$ and $t_{2}=5$.

An example with two sorts

Here $m=9, n=2, s_{1}=3, s_{2}=6$ and $t=9$.

	1	2	3	4	5	6	7	8
2	A							
3	A	A						
4	B	C	D					
5	B	C	D	E				
6	D	B	C	F	I			
7	D	B	C	G	H	E		
8	C	D	B	H	F	G	I	
9	C	D	B	I	G	H	F	E

$\mathcal{S}_{1}=\{1,2,3\}, \mathcal{T}_{1}=\{A\}$ and $t_{1}=1$.
$\mathcal{S}_{2}=\{4,5,6,7,8,9\}, \mathcal{T}_{2}=\{E, F, G, H, I\}$ and $t_{2}=5$.
$\mathcal{T}_{12}=\{B, C, D\}$ and $t_{12}=3$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.
$\mathcal{S}_{2}=\{2,3,4,5\}, \mathcal{T}_{2}=\{B, C, D\}$ and $t_{2}=3$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.
$\mathcal{S}_{2}=\{2,3,4,5\}, \mathcal{T}_{2}=\{B, C, D\}$ and $t_{2}=3$.
$\mathcal{S}_{3}=\{6,7,8,9\}, \mathcal{T}_{3}=\{J, K, L\}$ and $t_{3}=3$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.
$\mathcal{S}_{2}=\{2,3,4,5\}, \mathcal{T}_{2}=\{B, C, D\}$ and $t_{2}=3$.
$\mathcal{S}_{3}=\{6,7,8,9\}, \mathcal{T}_{3}=\{J, K, L\}$ and $t_{3}=3$.
$\mathcal{T}_{12}=\{A\}$ and $t_{12}=1$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.
$\mathcal{S}_{2}=\{2,3,4,5\}, \mathcal{T}_{2}=\{B, C, D\}$ and $t_{2}=3$.
$\mathcal{S}_{3}=\{6,7,8,9\}, \mathcal{T}_{3}=\{J, K, L\}$ and $t_{3}=3$.
$\mathcal{T}_{12}=\{A\}$ and $t_{12}=1 . \quad \mathcal{T}_{13}=\{E\}$ and $t_{13}=1$.

An example with three sorts

Here $m=9, n=3, s_{1}=1, s_{2}=4, s_{3}=4$ and $t=12$.

	1	2	3	4	5	6	7	8
2	A							
3	A	B						
4	A	C	D					
5	A	D	C	B				
6	E	F	G	H	I			
7	E	G	H	I	F	J		
8	E	H	I	F	G	K	L	
9	E	I	F	G	H	L	K	J

$\mathcal{S}_{1}=\{1\}, \mathcal{T}_{1}=\varnothing$ and $t_{1}=0$.
$\mathcal{S}_{2}=\{2,3,4,5\}, \mathcal{T}_{2}=\{B, C, D\}$ and $t_{2}=3$.
$\mathcal{S}_{3}=\{6,7,8,9\}, \mathcal{T}_{3}=\{J, K, L\}$ and $t_{3}=3$.
$\mathcal{T}_{12}=\{A\}$ and $t_{12}=1 . \quad \mathcal{T}_{13}=\{E\}$ and $t_{13}=1$.

Terminology

For a wide range of structures on the set Ω, some statisticians call Condition 2 equivalent estimation.

Terminology

For a wide range of structures on the set Ω, some statisticians call Condition 2 equivalent estimation.
Some other statisticians call Condition 2
commutative orthogonal block structure.

