

Square lattice designs

Yates $(1936,1937)$ introduced square lattice designs for this purpose. The number of varieties has the form n^{2} for some integer n, and each replicate consists of n blocks of n plots. Imagine the varieties listed in an abstract $n \times n$ square array. The rows of this array form the blocks of the first replicate, and the columns of this array form the blocks of the second replicate.
Let r be the number of replicates. If $r>2$ then $r-2$ mutually orthogonal Latin squares of order n are needed. For each of these Latin squares, each letter determines a block of size n.

Mutually orthogonal Latin squares

Definition
A pair of Latin squares of order n are orthogonal to each other if, when they are superposed, each letter of one occurs exactly once with each letter of the other.

Here are a pair of orthogonal Latin squares of order 4.

A	B	C	D
B	A	D	C
C	D	A	B
D	C	B	A

α	β	γ	δ
γ	δ	α	β
δ	γ	β	α
β	α	δ	γ

Definition

A collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal.
\qquad

What is a Latin square?

Definition

Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

Here is a Latin square of order 4.

A	B	C	D
B	A	D	C
C	D	A	B
D	C	B	A

Bailey
36 varieties
SMVT 2018
Square lattice designs for 16 varieties in 2-4 replicates

1	2	3	4					
5	6	7	8					
9	10	11	12					
13	14	15	16	\quad	A	B	C	D
:---:	:---:	:---:	:---:					
B	A	D	C					
C	D	A	B					
D	C	B	A					
α	α	β	γ	\quad	α	α	β	α
:---:	:---:	:---:	:---:					
β	δ	γ						

Replicate 1				Replicate 2				Replicate 3				Replicate 4			
1	5	9	13	1	2	3	4	1	2	3	4	1	2	3	4
2	6	10	14	5	6	7	8	6	5	8	7	7	8	5	6
3	7	11	15	9	10	11	12	11	12	9	10	12	11	10	9
4	8	12	16	13	14	15	16	16	15	14	13	14	13	16	15

Using a third Latin square orthogonal to the previous two Latin squares gives a fifth replicate, if required.

All pairwise variety concurrences are in $\{0,1\}$.
Bailey

Square lattice designs for n^{2} varieties in $r n$ blocks of n

Square lattice designs for n^{2} varieties, arranged in r replicates, each replicate consisting of n blocks of size n.

Construction

1. Write the varieties in an $n \times n$ square array.
2. The blocks of Replicate 1 are given by the rows; the blocks of Replicate 2 are given by the columns.
3. If $r=2$ then STOP.
4. Otherwise, write down $r-2$ mutually orthogonal Latin squares of order n.
5. For $i=3$ to r, the blocks of Replicate i correspond to the letters in Latin square $i-2$.

Good property II: Nearly equal concurrences

The concurrence of two varieties is the number of blocks in which they both occur.
It is widely believed that good designs have all concurrences as equal as possible, and so this condition is often used in the search for good designs.
In square lattice designs, all concurrences are equal to 0 or 1 .
If $r=n+1$ then all concurrences are equal to 1 and so the design is balanced.

Good property I: Last-minute changes

Adding or removing a replicate to/from a square lattice design gives another square lattice design, which can permit last-minute changes in the number of replicates used.

$$
36 \text { varietioc }
$$

36 varieties SMVT 2018

Efficiency factors and optimality

Given an incomplete-block design for a set \mathcal{T} of varieties in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i, j)-entry equal to the number of blocks in which treatments i and j both occur, and the information matrix is $I-(r k)^{-1} \Lambda$.
The constant vectors are in the null space of the information matrix.
The eigenvalues for the other eigenvectors are called canonical efficiency factors: the larger the better.
Let μ_{A} be the harmonic mean of the canonical efficiency factors.
The average variance of the estimate of a difference between two varieties in this design is
$\frac{1}{} \times$ the average variance in an experiment
$\overline{\mu_{A}} \times$ with the same resources but no blocks
So $\mu_{A} \leq 1$, and a design maximizing μ_{A}, for given values of r and k and number of varieties, is A-optimal. SMV $_{36 \text { varietes }} 2018$

Good property III: Optimality

Cheng and Bailey (1991) showed that, if $r \leq n+1$, square lattice designs are optimal among block designs of this size, even over non-resolvable designs.
Thus the aforementioned addition or removal of a replicate does not result in a poor design.

Chapter 2

New designs constructed from the Sylvester graph

We have a problem when $n=6$

If $n \in\{2,3,4,5,7,8,9\}$ then there is a complete set of $n-1$ mutually orthogonal Latin squares of order n.

Using these gives a square lattice design
for n^{2} treatments in $n(n+1)$ blocks of size n,
which is a balanced incomplete-block design.
There is not even a pair of mutually orthogonal Latin squares of order 6, so square lattice designs for 36 treatments are available for 2 or 3 replicates only.

Patterson and Williams (1976) used computer search to find a design for 36 treatments in 4 replicates of blocks of size 6 . All pairwise treatment concurrences are in $\{0,1,2\}$.
The value of its A-criterion μ_{A} is 0.836 , which compares well with the unachievable upper bound of 0.840

Bailey
36 varieties
SMVT 2018

The Sylvester graph and its starfish

The Sylvester graph Σ is a graph on 36 vertices with valency 5 It has a transitive group of automorphisms
(permutations of the vertices which take edges to edges), so it looks the same from each vertex.

The vertices can be thought of as the cells of a 6×6 grid.

At each vertex a, the starfish $S(a)$ defined by the 5 edges at a has 6 vertices, one in each row and one in each column.

Pedantic naming

When I started to explain these ideas,
I called this set of six vertices the spider centred at a.
Peter Cameron pointed out that spiders usually have more than
five legs, whereas some starfish have five.

SMVT 2018
Starfish whose centres are in the same column

		b			
					c
		a			

If there is an edge from a to c and an edge from b to c then the starfish $S(c)$ has two vertices in the third column.
This cannot happen,
so the starfish $S(a)$ and $S(b)$ have no vertices in common.
So, for any one column,
the 6 starfish centred on vertices in that column do not overlap, and so they give a single replicate of 6 blocks of size 6 .

A real starfish

ailey
36 varieties
SMVT 2018
The galaxy of starfish centered on column 3

D	A	B^{*}	C	E	F
F	E	C^{*}	B	D	A
E	B	A^{*}	D	F	C
B	F	D^{*}	A	C	E
A	C	E^{*}	F	B	D
C	D	F^{*}	E	A	B

This is a Latin square.

Bailey
36 varieties

Constructing resolved designs with r replicates

For $r=2$ or $r=3$:
Replicate 1 the blocks are the rows of the grid
Replicate 2 the blocks are the columns of the grid
Replicate 3 the blocks are the starfish of one particular column
These are square lattice designs.
For $r=4, r=5, r=6, r=7$ or $r=8$ we can construct very efficient resolved designs using some of
all rows of the grid
all columns of the grid
all starfish of some columns.
Note that, if there is an edge from a to c in the graph, then varieties a and c both occur in both starfish $S(a)$ and $S(c)$. So if we use the galaxies of starfish of two or more columns then some treatment concurrences will be bigger than 1 .

36 varieties
SMVT 2018

Consquence I: concurrences

The Sylvester graph has no triangles or quadrilaterals.
Consequence
If we make each starfish into a block, then the only way that distinct treatments a and d can occur together in more than one block is for vertices a and d to be joined by an edge so that they both occur in the starfish $S(a)$ and $S(d)$.

More properties of the Sylvester graph

Vertices at distance 2 from a are all in rows and columns different from a.
The Sylvester graph has no triangles or quadrilaterals.
This implies that, if a is any vertex, the vertices at distance 2 from vertex a are precisely those vertices which are not in the starfish $S(a)$ or the row containing a or the column containing a.

Consquence II: association scheme

If a is any vertex, the vertices at distance 2 from vertex a are precisely those vertices which are not in the starfish $S(a)$ or the row containing a or the column containing a.
Consequence
The four binary relations:

- different vertices in the same row;
- different vertices in the same column;
- vertices joined by an edge in the Sylvester graph Σ;
- vertices at distance 2 in Σ
form an association scheme.
So, for any incomplete-block design which is partially balanced with respect to this association scheme, the information matrix has five eigenspaces, which we know (in fact, they have dimensions $1,5,5,9$ and 16), so it is straightforward to calculate the eigenvalues and hence the canonical efficiency factors.

Our designs

$*^{m}$ galaxies of starfish from m columns, where $1 \leq m \leq 6$
$\mathrm{R}, *^{m}$ all rows; galaxies of starfish from m columns
$\mathrm{C}, *^{m}$ all columns; galaxies of starfish from m columns
$\mathrm{R}, \mathrm{C}, *^{m}$ all rows; all columns; galaxies of starfish from m columns,
If $m=6$ then the designed is partially balanced with respect to the association scheme just described and so we can easily calculate the canonical efficiency factors. Otherwise, we use computational algebra to calculate them exactly.
The large group of automorphisms tell us that

- the design $\mathrm{R}, *^{m}$ has the same canonical efficiency factors as the design $\mathrm{C}, *^{m}$;
- if we use the galaxies of starfish from m columns it does not matter which subset of m columns we use.

Constructing a PB resolved design with 7 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.
For the 7-th replicate, the blocks are the columns.
concurrence $= \begin{cases}2 & \text { for vertices joined by an edge } \\ 1 & \text { for vertices at distance } 2 \\ 1 & \text { for vertices in the same column } \\ 0 & \text { for vertices in the same row. }\end{cases}$

canonical efficiency factor	1	$\frac{19}{21}$	$\frac{6}{7}$	$\frac{11}{14}$
multiplicity	5	9	5	16

The harmonic mean is $\mu_{A}=0.8507$.
The unachievable upper bound given by the non-existent square lattice design is $A=0.8571$.

Constructing a PB resolved design with 6 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.

$$
\begin{aligned}
& \text { concurrence }=\left\{\begin{array}{ll}
2 & \text { for vertices joined by an edge } \\
1 & \text { for vertices at distance } 2 \\
0 & \text { for vertices in the same row or column. } \\
\text { canonical efficiency factor } & 1 \\
\frac{8}{9} & \frac{3}{4} \\
\text { multiplicity } & 10
\end{array} \frac{9}{16}\right.
\end{aligned}
$$

The harmonic mean is $\mu_{A}=0.8442$.
The unachievable upper bound given by the non-existent square lattice design is $\mu_{A}=0.8537$.

Bailey
36 varieties
SMVT 2018

Constructing a PB resolved design with 8 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.
For the 7-th replicate, the blocks are the columns.
For the 8-th replicate, the blocks are the rows.

$$
\begin{gathered}
\text { concurrence }= \begin{cases}2 & \text { for vertices joined by an edge } \\
1 & \text { otherwise }\end{cases} \\
\text { canonical efficiency factor } \\
\text { multiplicity }
\end{gathered}\left|\frac{11}{12}\right| \begin{array}{c|c}
\frac{7}{8} & \frac{13}{16} \\
\hline
\end{array}
$$

The harmonic mean is $\mu_{A}=0.8549$.
The non-existent design consisting of a balanced design in 7 replicates with one more replicate adjoined would have $A=0.8547$.

Values of μ_{A} for our designs

r	$\mathrm{R}, \mathrm{C}, *^{r-2}$	$\mathrm{C}, *^{r-1}$	$*^{r}$	HDP/ERW 1976	square lattice
3	0.8235				0.8235
4	0.8380	0.8341	0.8285	0.836	0.8400
5	0.8453	0.8422	0.8383		0.8485
6	0.8498	0.8473	0.8442		0.8537
7	0.8528	0.8507			0.8571
8	0.8549				0.8547

Highlighted entries correspond to partially balanced designs. Blue entries correspond to designs which do not exist.

36 varieties
SMVT 2018

What is a semi-Latin square?

Definition

A $(n \times n) / s$ semi-Latin square is an arrangement of $n s$ letters in n^{2} blocks of size s
which are laid out in a $n \times n$ square in such a way that each letter occurs once in each row and once in each column.

Chapter 3

New designs constructed from semi-Latin squares
Bailey 36 varieties \quad SMVT $2018 \quad 30 / 48$

A $(6 \times 6) / 2$ semi-Latin square

A	L	F	K	C	H	B	G	D	I	E	J
C	I	B	J	E	F	H	L	G	K	A	D
E	K	H	I	D	G	A	F	J	L	B	C
D	J	A	E	I	L	C	K	B	F	G	H
F	G	C	D	A	B	I	J	E	H	K	L
B	H	G	L	J	K	D	E	A	C	F	I

This one is not made from two Latin squares.

The semi-Latin square made from the galaxies of starfish centered on columns 3 and 4

D	ζ	A	ϵ	B^{*}	β	C	γ^{+}	E	δ	F	α
F	δ	E	α	C^{*}	γ	B	β^{+}	D	ϵ	A	ζ
E	β	B	ζ	A^{*}	α	D	δ^{+}	F	γ	C	ϵ
B	ϵ	F	β	D^{*}	δ	A	α^{+}	C	ζ	E	γ
A	γ	C	δ	E^{*}	ϵ	F	ζ^{+}	B	α	D	β
C	α	D	γ	F^{*}	ζ	E	ϵ^{+}	A	β	B	δ

* centre of Latin starfish $\quad{ }^{+}$centre of Greek starfish

From semi-Latin square to block design

Suppose that we have a $(n \times n) / s$ semi-Latin square.
Construction

1. Write the varieties in an $n \times n$ square array.
2. Each of the $n s$ letters gives a block of n varieties.

If the semi-Latin square is made by superposing s Latin squares then the block design is resolvable.

Trojan squares

Definition
If a semi-Latin square is made by superposing s mutually orthogonal $n \times n$ Latin squares then it is called a Trojan square.

A semi-Latin square does not have to be made by superposing Latin squares.

Theorem
If a Trojan square exists, then it is optimal among semi-Latin squares of that size.
What are the optimal ones when $n=6$?

Bailey
36 varieties
SMVT 2018

Good leads to good

Theorem
If the block design has A-criterion μ_{A} and the semi-Latin square has A-criterion λ_{A} then

$$
\frac{35}{\mu_{A}}=6(6-s)+\frac{6 s-1}{\lambda_{A}} .
$$

So maximizing μ_{A} is the same as maximizing λ_{A} (among semi-Latin squares which are superpositions of Latin squares, if we insist on resovable designs).

What is known about good semi-Latin squares with $n=6$?

Good designs have been found by RAB, Gordon Royle and
Leonard Soicher, partly by computer search. Independently, Brickell (1984) found some in communications theory.
In 2013, LHS gave a $(6 \times 6) / 6$ semi-Latin square made superposing Latin squares, so it gives $(6 \times 6) / s$ semi-Latin squares for $2 \leq s \leq 6$.
The table shows values of λ_{A}.

s	$*^{s}$	Brickell RAB 1990	$\begin{gathered} \text { RAB/GR } \\ 1997 \end{gathered}$	Brickell LHS web	LHS 2013	Trojan square
2	0.4889	0.5127	0.5133		0.5116	0.5238
3	0.6730			0.6922	0.6745	0.6939
4	0.7604				0.7614	0.7753
5	0.8111				0.8111	0.8227
6	0.8442				0.8442	0.8537

partially balanced
do not exist
36 varieties
SMVT 2018

Chapter 4

Semi-Latin square to block design: again

Just as with the designs made from the Sylvester graph, if we make a block design from a semi-Latin square then we have the option of including another replicate whose blocks are the rows and another replicate whose blocks are the columns.
As before, these two special replicates give us better designs than just using a semi-Latin square with 12 more letters.

$$
\begin{array}{llll}
\text { Bailey } & 36 \text { varieties } & \text { SMVT } 2018 & 38 / 48
\end{array}
$$

Personal communication from Emlyn Williams

When Emlyn Williams saw what we had done, he was motivated to re-run that computer search from the 1970s with a more up-to-date version of his search program on a more up-to date computer.

Thus he found resolvable designs for 36 varieties in up to eight replicates of blocks of size six.
All concurrences are in $\{0,1,2\}$.

Chapter 5

Comparison of designs

Are any of the new designs the same?

Two block designs are isomorphic
if one can be converted into the other by
a permutation of varieties and a permutation of blocks.
If two designs are isomorphic
then their efficiency factors are the same, but the converse may not be true.

Comparing the values of μ_{A} for the new designs

For $r=2$ and $r=3$ the designs in all three of the new series are square lattice designs.
For $4 \leq r \leq 7$ the designs in all three series have efficiency factors μ_{A} not far below the unachievable upper bound.
For $r=8$, they all do better than a balanced square lattice design with one replicate duplicated.

r	$\mathrm{RAB} / \mathrm{PJC}$ $\mathrm{R}, \mathrm{C}, *^{r-2}$	LHS $+\mathrm{R}, \mathrm{C}$	ERW	square lattice
4	0.8380	0.8393	0.8393	0.8400
5	0.8453	0.8456	0.8464	0.8485
6	0.8498	0.8501	0.8510	0.8537
7	0.8528	0.8528	0.8542	0.8571
8	0.8549	0.8549	0.8549	0.8547

Bailey
36 varieties
SMVT 2018
Are any of these designs the same?

r	RAB/PJC R, C, $*^{r-2}$	LHS + R, C	ERW	square lattice
4	0.8380	0.8393	0.8393	0.8400
5	0.8453	0.8456	0.8464	0.8485
6	0.8498	0.8501	0.8510	0.8537
7	0.8528	0.8528	0.8542	0.8571
8	0.8549	0.8549	0.8549	0.8547

It is possible that the LHS and ERW designs for $r=4$ are isomorphic, and that the RAB/PJC and LHS designs for $r=7$ are isomorphic. Otherwise, for $4 \leq r \leq 7$, the efficiency factors of the three new designs differ slightly, so no pair of the new designs are isomorphic.
For $r=8$, all three new designs have the same efficiency factor. However, no pair are isomorphic, even though there are permutations of the varieties that convert any one concurrence matrix into either of ofte other two.

Chapter 6

References

Lattice designs

- Frank Yates (1936): A new method of arranging variety trials involving a large number of varieties. Journal of Agricultural Science 226, 424-455.
- Frank Yates (1937): A further note on the arrangement of variety trials: quasi-Latin squares. Annals of Eugenics 7, 319-332.
- H. D. Patterson and E. R. Williams (1976): A new class of resolvable incomplete block designs. Biometrika 63, 83-92.
- E. R. Williams (1977): Iterative analysis of generalized lattice designs. Australian Journal of Statistics 19, 39-42.
- C.-S. Cheng and R. A. Bailey (1991): Optimality of some two-associate-class partially balanced incomplete-block designs. Annals of Statistics 19, 1667-1671.

Bailey
36 varieties
SMVT 2018

Semi-Latin squares

- Leonard H. Soicher: SOMA update. www.maths.qmul.ac.uk/~leonard/soma/
- E. F. Brickell (1984): A few results in message authentication. Congressus Numerantium 43, 141-154.
- R. A. Bailey (1990): An efficient semi-Latin square for twelve treatments in blocks of size two. Journal of Statistical Planning and Inference 26, 263-266.
- R. A. Bailey and G. Royle (1997): Optimal semi-Latin squares with side six and block size two. Proceedings of the Royal Society, Series A 453, 1903-1914.
- L. H. Soicher (2013): Optimal and efficient semi-Latin squares. Journal of Statistical Planning and Inference 143, 573-582.
- R. F. Bailey keeps a database of distance-regular graphs, including the Sylvester graph, at www.distanceregular.org.
- A. E. Brouwer, A. M. Cohen and A. Neumaier (1989): Distance-Regular Graphs, Ergebnisse der Mathematik 318, Springer: Heidelberg.
- R. A. Bailey, Peter J. Cameron and Tomas Nilson (2018): Sesqui-arrays, a generalisation of triple arrays. Australasian Journal of Combinatorics 71, 427-451.

The Sylvester graph

\qquad

