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Abstract

I have N experimental units available for an experiment to
compare v treatments. The experimental units may be all alike,
or they make be partitioned into blocks,
or there may be rows and columns.

The design is the function allocating treatments to units.
It is optimal if it minimizes the average value of the variance of
the estimator of the difference between two treatments.

How do I find an optimal design for my given situation?

1. Find a design that satisfies the conditions of a theorem
guaranteeing optimality?

2. Use folklore that suggests that being close to those
conditions implies being close to optimal?

3. Use patterns, to find a design that is regular in the sense of
looking the same from the viewpoint of each treatment?

4. Use symmetries, to find a design with a large group of
automorphsims?

5. Computer search?
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The set-up: treatments and experimental units

I have v treatments that I want to compare.
I have N experimental units that I can use, where N > v.
One treatment can be applied to each.

Case 1. The experimental units are all alike.

Case 2. The experimental units are divided into b blocks,
with k experimental units in each block
(so N = bk).
We expect there to be inherent differences between
blocks.

Case 3. There are two or more systems of blocks,
such as rows and columns.

How should I choose a design?
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Case 1

The experimental units are all alike.
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Estimation and variance

We measure the response Y on each unit.

If that unit has treatment i then we assume that

Y = τi + random noise.

We want to estimate all the simple differences τi − τj.

Put Vij = variance of the best linear unbiased estimator for
τi − τj.

We want all the Vij to be small.

The design is A-optimal if it minimizes ∑v
i=1 ∑v

j=i+1 Vij.
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How do we calculate variance?

The replication ri of treatment i is its number of occurrences.
So one constraint is

v

∑
i=1

ri = N.
Theorem
Assume that all the noise is independent, with variance σ2. Then

Vij =

(
1
ri
+

1
rj

)
σ2.

Put V̄ = average value of the Vij. Then V̄ =
2
v

(
v

∑
i=1

1
ri

)
σ2.

Theorem
V̄ is minimized when the replications are as equal as possible,
in the sense that no pair differ by more than 1.

Proof.
I set this to my undergraduates.
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Case 2

The experimental units are divided into b blocks of k units each.
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Model when there are blocks

We measure the response Y on each unit in each block.

If that unit has treatment i and block m, then we assume that

Y = τi + βm + random noise.

To get rid of the β parameters, we look at (I− P)Y,
where P is the N×N matrix of orthogonal projection onto the
space spanned by the characteristic vectors of the blocks.

Let X be the N× v incidence matrix of treatments in
experimental units.
The information matrix is X>(I− P)X.
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Design → graph

If i 6= j, the concurrence λij of treatments i and j is
the number of occurrences of the pair {i, j} in blocks,
counted according to multiplicity.

The concurrence graph G of the design has
the treatments as vertices.
There are no loops.
If i 6= j then there are λij edges between i and j.
So the valency di of vertex i is

di = ∑
j 6=i

λij.
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Graph → matrix

The Laplacian matrix L of this graph has
(i, i)-entry equal to di = ∑

j 6=i
λij

(i, j)-entry equal to −λij if i 6= j.
So the row sums of L are all zero.

Hence L has eigenvalue 0 on the all-1 vector.

This trivial eigenvalue has multiplicity 1
⇐⇒ the graph G is connected
⇐⇒ all contrasts between treatment parameters are estimable.

Call the remaining eigenvalues nontrivial. They are all
non-negative.

The information matrix is precisely k−1L.
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Estimation and variance when there are blocks

Theorem
Assume that all the noise is independent, with variance σ2. Then the
variance of the best linear unbiased estimator of the simple difference
τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2,

where L− is any generalized inverse of L.

Put V̄ = average value of the Vij. Then

V̄ =
2kσ2 Tr(L−)

v− 1
= 2kσ2 × 1

harmonic mean of θ1, . . . , θv−1
,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.

A-optimal ⇐⇒ minimize V̄
⇐⇒ maximize harmonic mean of θ1, . . . , θv−1.
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First folklore for block designs

Theorem
If v divides N and there are no blocks then the A-optimal designs are
precisely the equireplicate ones, that is, those where all treatments
have equal replication.

Folklore surrogate

If v divides N and there are b blocks of size k where b > 1 then
the set of equireplicate designs contains some A-optimal designs.

This was believed from the introduction of incomplete-block
designs in the 1930s, so the search for good designs was
restricted to equireplicate ones.

By the 1990s, it had been shown to be false in general.
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Designs for k = 2 when b = v (blocks shown as edges)

The only connected equireplicate
design is the cycle.

s

s
s

s

s s
s

ss

s

If the distance between i and j is w

Vij =
2w(v−w)

v
σ2,

> 4σ2 if v ≥ 10 and 3 ≤ w.

Here is an alternative
design.

ss s
s s

s s
s

ss

Vij ≤ 4σ2 for all i, j.

A star attached to a
triangle is A-optimal
for all v ≥ 12.
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Reactions

Statistician: that result cannot be correct, because we know that
equal replication is best.

Biologist: the second design should be used, because we know
that we should compare all treatments with the same thing.

Producer of one of the compared treatments: that’s not fair!
My treatment has replication only one, so the variances of its
comparisons with other treatments will be too large.
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What about symmetry and regularity?

Design s

s
s

s

s s
s

ss

s ss s
s s

s s
s

ss

Automorphisms 2× 10 2× 7!

regular more symmetries
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Some history

In 1980, Jones and Eccleston published a short paper in JRSSB
on the results of a computer search for A-optimal designs with
k = 2 and v = b ≤ 10
(so average replication = r̄ = 2);
when v = 9 and v = 10 the optimal design is a star attached to
a square.

Their work was ignored by most statisticians, because we were
so sure that equireplicate designs are best that we assumed that
there was an error in the computation.
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Balance

Definition
A balanced incomplete-block design (BIBD) is a block design
with k < v in which no treatment occurs more than once in any
block and all treatment concurrences are equal.

Theorem
Balanced incomplete-block designs are A-optimal.

Folklore surrogate

A BIBD is optimal even if it does not use all the available blocks.

This is nonsense: the theorem is comparing designs using the
same number of experimental units.
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A comparison

Folklore surrogate

If k divides v and there is a BIBD for v treatments in b− (v/k) blocks
of size k, then the best thing to do is to use that BIBD and make the
extra blocks out of any partition of the treatments into sets of size k.

The false reasoning in this is more subtle.

Example

Suppose that v = 6, b = 12 and k = 3.

Design V̄/σ2

BIBD with 10 blocks 0.5
That BIBD with two more blocks 0.42

Develop {0, 1, 2} and {0, 1, 3}modulo 6 0.4196...
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How should we relax the BIBD condition?

Recall: the concurrence matrix Λ has entries λij,
where λij is the number of blocks containing treatments i and j.

BIBD Λ = rI + λ(J− I)

Relax Λ = rI + (λ + 1)A + λ(J−A− I)
where A2 is a linear combination of I, A and J

PBIBD(2) Λ = rI + λ1A + λ2(J−A− I)
where A2 is a linear combination of I, A and J

RGD Λ = rI + (λ + 1)A + λ(J−A− I)
PBIBD(s) Λ = rI + λ1A1 + · · ·+ λsAs

where I + A1 + · · ·+ As = J and
AiAj is a linear combination of I, A1, . . . , As.

Relax ⇒ Partially Balanced IBD
⇓ with 2 associate classes

Regular Graph Design
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Variance and concurrence

Folklore surrogate

If there are any regular graph designs, all optimal designs are RGDs.

Folklore surrogate

Variance Vij is a decreasing function of λij.

Neither is true in general. Counterexamples exist.

Theorem
If the information matrix has only two distinct non-trivial
eigenvalues then Vij decreases linearly as λij increases.
In particular, this is true if the design is partially balanced with
two associate classes, which means that the information matrix
is in the Bose–Mesner algebra of a strongly regular graph.

Theorem
If the design is partially balanced with two associate classes, and the
concurrences differ by 1, and one of those eigenvalues is equal to r,
then the block design is A-optimal.
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What about distance in the concurrence graph G?

Recall: G has one vertex for each treatment
and λij edges between vertices i and j.

The distance between i and j in G is
the length of the shortest path between vertices i and j.

Folklore surrogate

Variance increases with distance in the concurrence graph.

This is not true in general.
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Electrical networks

We can consider the concurrence graph as an electrical network
with a 1-ohm resistance in each edge. Connect a 1-volt battery
between vertices i and j. Current flows in the network,
according to these rules.
1. Ohm’s Law:

In every edge, voltage drop = current × resistance =
current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery,
the total current coming in is equal to the total current
going out.

Find the total current I from i to j, then use Ohm’s Law to
define the effective resistance Rij between i and j as 1/I.
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Electrical networks: resistance distance

Theorem
The effective resistance Rij between vertices i and j is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

So
Vij = Rij × kσ2.

In other words, variance is proportional to resistance distance.
Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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So how do we find good designs?

The numbers v, b and k are specified to us.
It is rather rare for these to fit one of the theorems that
guarantees a design to be A-optimal.
So how do we find a good design?

1. Computer search.
2. Use patterns.
3. Accident.
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Computer search

Except for very small designs,
exhaustive search is not usually feasible.
Here is one common approach.

1. Start with a random design.
2. Search among “close” designs

(for example, swap a pair of treatments between blocks).
3. If a neighbouring design is better, move to it,

and repeat from Step 2.
4. If no neighbouring design is better, record this design.
5. Repeat from Step 1 many times.

Then choose the best of the recorded designs.

The purpose of the last step is to avoid being stuck in a local
optimum.
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How successful is computer search?

It usually finds fairly good designs.

However, if the optimal design has a high degree of symmetry,
then it is often sitting on the top of a mountain with very steep
sides, and so this approach will not find it.
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Use patterns

I typically start with a combinatorial object with v points
which is either highly regular or highly symmetric,
and then see if I can use the patterns in that
to construct a design with the specified parameters.

For example:

if v = 7 begin with the points of the Fano plane;
if v = 8 start with the vertices of a cube;
if v = 10 think about all pairs from {1, 2, 3, 4, 5};
if v = 12 use the faces of a regular dodecahedron;
if v = 21 use the points of the projective plane over the

finite field with 4 elements.
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How successful is the pattern method?

If the optimal design is highly symmetric,
this method can find it when computer search does not.

It usually finds good designs, but will not find the optimal one
if none of the optimal ones is highly symmetric.
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An example: v = 10, b = 30, k = 2 (A = 2σ2/(rV̄))

Method Patterns Search

Design

Treatments are all pairs
from {1, 2, 3, 4, 5}.
Two pairs form a block
if they overlap.

Treatments are the vertices
of a 6-cycle and 4 more
points.
Blocks are the edges of the
6-cycle, and all duos with
one from the 6 and one
from the 4.

V̄/σ2 0.63333 0.62698
A 0.52632 0.53165

Auto-
morphisms 5! = 120 12× 4! = 288

regular more symmetries
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Accident: an example

Trials of new crop varieties typically have a large number of
varieties.

Even at a well-run testing centre,
inhomogeneity among the plots (experimental units) makes it
desirable to group the plots into homogeneous blocks,
usually too small to contain all the varieties.
For management reasons, it is often convenient if the blocks
can themselves be grouped into replicates, in such a way that
each variety occurs exactly once in each replicate. Such a block
design is called resolvable.
A block design is A-optimal if it minimizes the sum of the
variances of the estimators of differences between varieties.
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Square lattice designs

Yates (Rothamsted Experimental Station: 1936, 1937)
introduced square lattice designs for this purpose.
The number of varieties has the form n2 for some integer n,
and each replicate consists of n blocks of n plots.

Imagine the varieties listed in an abstract n× n square array.
The rows of this array form the blocks of the first replicate,
and the columns of this array form the blocks of the second
replicate.

Let r be the number of replicates. If r > 2 then r− 2 mutually
orthogonal Latin squares of order n are needed. For each of
these Latin squares, each letter determines a block of size n.
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Mutually orthogonal Latin squares

Definition
A pair of Latin squares of order n are orthogonal to each other
if, when they are superposed, each letter of one occurs exactly
once with each letter of the other.

Here are a pair of orthogonal Latin squares of order 4.

A B C D
B A D C
C D A B
D C B A

α β γ δ

γ δ α β

δ γ β α

β α δ γ

Definition
A collection of Latin squares of the same order is
mutually orthogonal if every pair is orthogonal.
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Square lattice designs for 16 varieties in 2–4 replicates

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

A B C D
B A D C
C D A B
D C B A

α β γ δ

γ δ α β

δ γ β α

β α δ γ

Replicate 1
1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

Replicate 2
1
5
9

13

2
6
10
14

3
7
11
15

4
8
12
16

Replicate 3
1
6
11
16

2
5
12
15

3
8
9
14

4
7
10
13

Replicate 4
1
7
12
14

2
8

11
13

3
5

10
16

4
6
9

15

Using a third Latin square orthogonal to the previous two Latin
squares gives a fifth replicate, if required.

Square lattice designs are resolvable and A-optimal.
All pairwise variety concurrences are in {0, 1}.
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Using a third Latin square orthogonal to the previous two Latin
squares gives a fifth replicate, if required.

Square lattice designs are resolvable and A-optimal.
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We have a problem when n = 6

If n ∈ {2, 3, 4, 5, 7, 8, 9} then there is a complete set of n− 1
mutually orthogonal Latin squares of order n.

Using these gives a square lattice design
for n2 treatments in n(n + 1) blocks of size n,
which is a balanced incomplete-block design.

There is not even a pair of mutually orthogonal Latin squares
of order 6, so square lattice designs for 36 treatments are
available for 2 or 3 replicates only.

Patterson and Williams (University of Edinburgh: 1976)
used computer search to find a design for
36 treatments in 4 replicates of blocks of size 6
with all concurrences in {0, 1, 2}.
The average variance is very little more than the unachievable
lower bound.
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A new design problem: sesqui-arrays

A sesqui-array of order n is an allocation of n(n + 1) letters to
the cells of rectangle with n + 1 rows and n2 columns,
satisfying conditions (i) and (ii) below.

Example with n = 3

D H F L E K I G J
A K I B J G C L H
J A L D B F K E C
G E A H I B D C F

Condition (i) Each letter occurs in all rows except one.

Condition (ii) Each row has n letters in common with each
column.
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Constructing sesqui-arrays

Tomas Nilson (University of mid-Sweden) and
Peter Cameron (University of St Andrews) hoped to give a
general construction of sesqui-arrays for all n ≥ 3.

TN found a general construction, using a pair of mutually
orthogonal Latin squares of order n. So this works for all
positive integers n except for n ∈ {1, 2, 6}.

This motivated PJC to find a sesqui-array for n = 6.

Later, RAB found a simpler version of TN’s construction, that
needs a Latin square of order n but not orthogonal Latin
squares. So n = 6 is covered. If this had been known earlier,
PJC would not have found the nice design for n = 6.
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Naughty but nice

6 is uniquely BAD amongst positive integers in that
it is big enough to have a pair of orthogonal Latin squares
but there are no such squares.

6 is uniquely GOOD amongst positive integers in that
the symmetric group S6 of all permutations of {1, 2, 3, 4, 5, 6}
has an automorphism σ which is not of the form σ(g) = h−1gh.

This can be used to construct the Sylvester graph,
which has 36 vertices, all with valency 5.
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The Sylvester graph

The vertices can be thought of as the cells of a 6× 6 grid.

i i i i i ii i i i i ii i i i i ii i i i i ii i i i i ii i i i i i1 2 3 4 5 6
F
G

@@ @@ @@�� �� ��

Rows are labelled by
the one-factorizations
(edge-colourings) of K6.

F = ||12|34|56||13|25|46||14|26|35||15|24|36||16|23|45||
G = ||12|34|56||23|15|46||24|16|35||25|14|36||26|13|45|| = F (12)

Automorphisms: S6 on rows and on columns at the same time;
the outer automorphism of S6 swaps rows with columns.
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The Sylvester graph and its starfish

At each vertex a, the starfish S(a) defined by the 5 edges at a
has 6 vertices, one in each row and one in each column.

ya

i
A
A
A
A i
��

��
��

i@
@

i
�

�
�
�

i
J
J
J
J
J
J

Use each starfish as a block of size 6.
The galaxy of starfish with centres in a single column give a
single replicate. Hence up to six replicates.
Rows and columns give two further replicates, if needed.
All these designs have average variance very close to the
unachievable lower bound.
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Personal communication from Emlyn Williams

I gave a talk about these designs in August 2017
at the meeting on Latest advances in the theory and applications of
design and analysis of experiments
in the Banff International Research Station in Canada.

They video all lectures, and make them available on the web.

Emlyn Williams learnt about this,
and watched the video of my lecture.

This motivated him to re-run that computer search from the
1970s with a more up-to-date version of his search program
on a more up-to date computer.

Thus he found resolvable designs for 36 varieties in up to eight
replicates of blocks of size six.

All concurrences are in {0, 1, 2}.

He emailed me these results in September 2017.
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Two resolvable designs with v = 36, k = 6, r = 8 and
b = 48

These two designs have exactly the same value of V̄,
so they are equally good.

They are not isomorphic.
Our design has an automorphism group of order 2× 6! = 1440
while Emlyn Williams’ design has no automorphisms other
than the identity.

But there is a permutation of the varieties taking one
concurrence matrix to the other,
which explains why they have exactly the same value of V̄.
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Case 3

There are two or more systems of blocks.
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An example of a two-phase experiment

The treatments are 10 varieties of common beans.

In Phase I, these are grown in a field, in 10 blocks of size 6.
In Phase II, a sample of beans is taken from each plot.
Each sample is cooked in a special machine. The measured
response is the time taken to properly cook the beans.
In Phase II, only four samples can be processed per day.
So we should treat days as 15 blocks of size 4.
Now the design consists of one function allocating bean
varieties to plots in the field, and another function allocating
each plot to a run of the cooking machine.
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varieties to plots in the field, and another function allocating
each plot to a run of the cooking machine.
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Model when there are two systems of blocks

We measure the response Y on each sample.

If that sample is from a plot in block m with treatment i
in Phase I and it is allocated to day n in Phase II, then we
assume that

Y = τi + βm + γn + random noise.

To get rid of the β parameters and the γ parameters,
we look at (I− P∗)Y, where P∗ is the N×N matrix of
orthogonal projection onto the space spanned by the
characteristic vectors of the blocks in Phase I and the
characteristic vectors of the days in Phase II.

Let X be the N× v incidence matrix of treatments in
experimental units.
The information matrix is X>(I− P∗)X.
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Computer search

At a conference on variety-testing in Słupia Wielka, Poland,
in June 2018, Nha Vo-Thanh (Universität Hohenheim) gave a
talk explaining his work with Hans-Peter Piepho on several
different methods of computer search to find a good design for
this experiment.

That evening, I got out some paper and a pen, and scribbled
down some ideas, using my pattern approach. Very soon, I had
a design with a smaller value of V̄ than he had found.
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Principle: Consider the smaller blocks first

The blocks in Phase II are smaller than those in Phase I,
so they will have more effect on increasing the variance.
So it makes sense to consider the design for Phase II first.

There are 10 treatments in 15 blocks of size 4.
Think of the treatments as all pairs from {1, 2, 3, 4, 5}.
An obvious way to make 15 blocks of size 4 is to use the
4-cycles in the complete graph K5 on 5 vertices.
In fact, this design is balanced (all concurrences are 2),
so it is best possible for Phase II.
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The non-intuitive step

The Phase II design has the property that we can group its days
into five groups of three days, in such a way that every
treatment in a group occurs twice in that group.

Arrange each group as a (2× 3)/2 rectangle,
in such a way that days are columns
and each treatment in the group occurs in both rows.
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Use each row as a field block in Phase I.
The treatment information lost to field blocks is
the same as the information lost to rectangles,
which is part of the information already lost to days,
so no further information is lost in Phase I.
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A surprising theorem

Theorem
In a nested row-column design,
if the rows within each rectangle have exactly the same treatments
then the loss of information on treatment differences is the same
as it is in the block design obtained by ignoring rectangles and rows.

In this example, the best design for Phase I alone cannot be
arranged as a nested row-column design with this property.
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Comparison of designs

Design computer search patterns
A 0.80896 0.83333
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So how did I spot that grouping?

If you take a BIBD for 10 treatments in 15 blocks of size 4 off the
shelf, it may not be easy to find that rearrangement in five
rectangles.

The pattern approach suggests making one rectangle by using
the six pairs which avoid 5.
Two possibilities come to mind immediately.

12
34
14
23

13
24
12
34

14
23
13
24
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23
14
34

13
34
12
24

14
24
13
23
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How do those guys talk to each other?
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After I showed my design to
NVT and HPP, they adapted

their search method to
incorporate that theorem
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HHHj
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Conclusion

So—good luck with your search for good designs!

Which method will you use?
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