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Abstract

It is now widely believed that biological diversity is good for the environment.
One way that ecologists test this is to place random collections of species in
mini-environments and then measure some outcome. Others use a carefully
chosen collection of species.

Is the outcome affected by the number of different species present,
or is it just the number of members of each species that matters?
And is there an interaction between these? Are the answers affected by
the temperature, or by the complexity of the environment?
I have been working with a group of fresh-water ecologists on the design and
analysis of such experiments. Our subsets of species are carefully chosen, not
random. We design the combinations of these subsets with levels of other factors.
We also fit a nested family of plausible models to the data.
Our results suggest that the underlying model is not diversity at all. One of my
crucial inputs has been the use of Hasse diagrams as a way of understanding a
complicated family of plausible models for the expectation of the response.
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Biodiversity experiments

This seems to be the received wisdom.

Treatments: random sets of species
Measured response Y: some eco-desirable outcome

Conclusion: the greater the number of different species,
the better the outcome.
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A more carefully controlled experiment

A, B, C, D, E, F — six types of freshwater “shrimp”.
Put 12 shrimps in a jar containing stream water and alder leaf litter.
Measure how much leaf litter is eaten after 28 days.

Experimental unit = jar.

Assemblage Richness
identity Level

6

A, . . . , F monoculture 12 of type A 1

15

AB, . . . , EF duoculture 6 of A, 6 of B 2

20

ABC, . . . , DEF triculture 4 of A, 4 of B, 4 of C 3

—
41

The experiment was carried out in 4 blocks of 41 jars.
Actually 42 jars, because untreated jars were included,
but their data was so obviously different that it was excluded from further
modelling.
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Initial model fitting

The biologist fitted the model ‘Richness’ with 3 parameters,
one for each level of richness,
and found no evidence of any differences between the levels.

This model for the response Y is

E(Y) =


α1 on monocultures A, . . . , F
α2 on duocultures AB, . . . , EF
α3 on tricultures ABC, . . . , DEF

The data did not give any evidence against the null hypothesis that

α1 = α2 = α3 :

this is the ‘Constant’ model, or null model.
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Call in a statistician

Assemblage identity R x1 x2 x3 x4 x5 x6
1 A 12 of type A 1 12 0 0 0 0 0
...

...
6 F 12 of type F 1 0 0 0 0 0 12
7 AB 6 of A, 6 of B 2 6 6 0 0 0 0
...

...
21 EF 6 of E, 6 of F 2 0 0 0 0 6 6
22 ABC 4 of A, 4 of B, 4 of C 3 4 4 4 0 0 0

...
...

41 DEF 4 of D, 4 of E, 4 of F 3 0 0 0 4 4 4

I suggested the model ‘Type’ with 6 parameters β1, . . . , β6:

E(Y) =
6

∑
i=1

βixi
(
∑ xi = 12 always, so no need for intercept.

)
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Family of expectation models (subspaces): dimensions shown in red
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The subspace at the bottom of a line is
contained in the subspace at the top of it

Constant (1)

Richness (3) Type (6)

Richness + Type

(add a different constant for each level of
richness)

(8)

Richness ∗ Type

(βi can change with each level of richness but
does not depend on what else is present)

(18)

Assemblage identity(41)

Success: an ecology journal published
I Hasse diagram of family of models
I statement that each row of an ANOVA

table is for a difference between models.
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Analysis of Variance (ANOVA) table

Source df SS MS F P
Richness 2 0.000009 0.000005 0.49 n.s.
Type 5 0.003859 0.000772 81.37 < 0.0005
Richness ∗ Type 10 0.000127 0.000013 1.34 n.s.
Assemblage Identity 23 0.000105 0.000005 0.48 n.s.
Block 3 0.000067 0.000022
Error 120 0.001138 0.000009
Total 163 0.005306

Each row in the ANOVA table represents not a model but the difference between a
larger model and the next smaller one. See Fig. 1 for how the models are related.

Verbatim from Journal of Animal Ecology
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Scaling the Hasse diagram of expectation subspaces

Suppose that V1 and V2 are expectation subspaces,
with V1 < V2,
and an edge joining V1 to V2.

The mean square for
the extra fit in V2 compared to the fit in V1 is

SS(fitted values in V2) − SS(fitted values in V1)
dim(V2)− dim(V1)

.

Scale the Hasse diagram so that each edge has length proportional to the relevant
mean square,
and show the residual mean square to give a scale.
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What the data showed: mean squares

qq

qqqq

ConstantRichness

TypeRichness + Type
Richness ∗ TypeAssemblage ID

Scale:
3× residual mean square

Conclusions:
The model Richness does not explain the data.
The model Type explains the data well.
There is no evidence that any larger model
does any better.

Two experiments, with two responses each,
all led to similar conclusions.
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Communicating the ideas

For complicated families of models,
the biologists that I work with often find the Hasse diagram
easier to understand than the equations.

Similarly, they find the scaled Hasse diagram
easier to understand than the anova table.
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A new experiment on a different ecosystem (7 types)

Assemblage Richness
identity Level

7

A, . . . , G monoculture 12 of type A 1

21

AB, . . . , FG duoculture 6 of A, 6 of B 2

35

ABC, . . . , EFG triculture 4 of A, 4 of B, 4 of C 3

—
63

“Do I really need all 35 tricultures?”

“Use 7 tricultures making a balanced incomplete-block design.”

t
t
tt��

��
t
t t

A

CF

BG

D

E

Another success: Advances in
Ecological Research published
this picture of the Fano plane.
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How should such experiments be designed?

What is the purpose of the experiment?

I To find out whether the response changes with different levels of richness?
I To estimate the differences between the different levels of richness?

I If so, we should replicate them more equally than 6 : 15 : 20 or 7 : 21 : 7.

I To discriminate between the (incomparable) models Richness and Type?
I To discriminate between the model Type and the more general model which

allows the response of each type to depend on what other types are present?
I To estimate the parameters (response per individual for each type) for the

model Type?

I If so, we should not include any polycultures.
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How should we choose which subsets to include?

Suppose that there are t types in all.
For a given level k of richness,
each treatment consists of equal numbers n of each type
in some subset of k types.
Suppose that we can include b such treatments.

Should we

I choose subsets at random (traditional for ecologists)?
(b subsets, each used the same number of times)

I choose the subsets that would be best for an incomplete-block design with the
usual linear model
(e.g. the Fano plane)?
(b blocks, each of k plots; one type on each plot;
each plot measured once)

I adopt some other strategy?
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6 subsets of size 2, from 6 types
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A non-intuitive result

Consider incomplete-block designs for t treatments in b blocks of size k.

Usual model expected response on any unit with
treatment i in block B is τi + δB

Polyculture model expected response on any unit with a
collection of n individuals from each
species in subset B is n ∑

i∈B
βi

If there is no balanced incomplete-block design for t treatments in b blocks of
size k then a design which is best for one situation may be worst for the other.
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One aspect of a third biodiversity experiment: 4 types of “shrimp”

Composition Richness x1 x2 x3 x4
1 A 12 of type A 1 12 0 0 0
2 B 12 of type B 1 0 12 0 0
3 C 12 of type C 1 0 0 12 0
4 D 12 of type D 1 0 0 0 12
5 AB 6 of A, 6 of B 2 6 6 0 0
6 AC 6 of A, 6 of C 2 6 0 6 0
7 AD 6 of A, 6 of D 2 6 0 0 6
8 BC 6 of B, 6 of C 2 0 6 6 0
9 BD 6 of B, 6 of D 2 0 6 0 6

10 CD 6 of C, 6 of D 2 0 0 6 6
11 ABC 4 of A, 4 of B, 4 of C 3 4 4 4 0
12 ABD 4 of A, 4 of B, 4 of D 3 4 4 0 4
13 ACD 4 of A, 4 of C, 4 of D 3 4 0 4 4
14 BCD 4 of B, 4 of C, 4 of D 3 0 4 4 4
15 ABCD 3 each of A, B, C and D 4 3 3 3 3
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Family of expectation models (so far)
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t
t t
t

t

t

Constant (1)

Richness (4) Type (4)

Richness + Type(7)

Richness ∗ Type(13)

Composition(15)

Five responses were measured. For every
response, the sum of squares of fitted val-
ues for Composition was hardly any big-
ger than the sum of squares of fitted val-
ues for the model Richness ∗ Type, so we
decided to omit Richness ∗ Type.
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Other details of the third experiment

Each of the 15 compositions was combined with
three temperatures: 5o C, 10o C and 15oC.

Each of the 45 combinations was replicated twice.

Three temperature-controlled rooms in a lab were used.
Each room had a single temperature and two of each composition.
Therefore there was no appropriate residual mean square to compare the
main effect of Temperature with, but all other effects could be assessed.
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Diagram from a paper in Global Change Biology

Composition × Temp. 
(45) 

Composition + Richness + Temp. + Type ×  Temp. 
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Brief results from the third biodiversity experiment

For each single type of response,
Type× Temperature explained the data well,
with no need for further terms.

For multifunctionality, for each of the five types of response,
the mean of the three best outcomes was calculated.
For each of the 45 treatment combinations,
we recorded the number of types of response
on which the mean outcome exceeded 25% of this “best score”.
On this measure, compositions with high levels of Richness scored well.

Note that this is a simple consequence of the model

β1x1 + β2x2 + β3x3 + β4x4

if the rankings of β1, β2, β3 and β4 are different over the five types of response.

Bailey Experiments in biodiversity RSS, Belfast, 2019 21/29



Brief results from the third biodiversity experiment

For each single type of response,
Type× Temperature explained the data well,
with no need for further terms.

For multifunctionality, for each of the five types of response,
the mean of the three best outcomes was calculated.

For each of the 45 treatment combinations,
we recorded the number of types of response
on which the mean outcome exceeded 25% of this “best score”.
On this measure, compositions with high levels of Richness scored well.

Note that this is a simple consequence of the model

β1x1 + β2x2 + β3x3 + β4x4

if the rankings of β1, β2, β3 and β4 are different over the five types of response.

Bailey Experiments in biodiversity RSS, Belfast, 2019 21/29



Brief results from the third biodiversity experiment

For each single type of response,
Type× Temperature explained the data well,
with no need for further terms.

For multifunctionality, for each of the five types of response,
the mean of the three best outcomes was calculated.
For each of the 45 treatment combinations,
we recorded the number of types of response
on which the mean outcome exceeded 25% of this “best score”.
On this measure, compositions with high levels of Richness scored well.

Note that this is a simple consequence of the model

β1x1 + β2x2 + β3x3 + β4x4

if the rankings of β1, β2, β3 and β4 are different over the five types of response.
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One aspect of a fourth biodiversity experiment

A, B, C— types of freshwater “shrimp”.
Put 12 shrimps in a jar with stream water and alder leaf litter.
Measure how much leaf litter is eaten after 28 days.

Experimental unit = jar.

Assemblage identity Richness x1 x2 x3
1 A 12 of type A 1 12 0 0
2 B 12 of type B 1 0 12 0
3 C 12 of type C 1 0 0 12
4 AB 6 of A, 6 of B 2 6 6 0
5 AC 6 of A, 6 of C 2 6 0 6
6 BC 6 of B, 6 of C 2 0 6 6
7 ABC 4 of A, 4 of B, 4 of C 3 4 4 4
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Family of expectation models (so far)
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For these numbers, Assemblage identity = Richness ∗ Type.
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The other aspect of the biodiversity experiment
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Hasse diagram for enviromental model subspaces

v Constant(1)

v Plastic rings or not(2)

v Number of plastic rings (0 or 2 or 3)(3)

v Fractal dimension (how twiddly were the extra bits?)(5)
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The experiment: 3 blocks, each with 35 jars

Environment Assemblage identity
Complexity A B C AB AC BC ABC

0 × × × × × × ×
1 × × × × × × ×
2 × × × × × × ×
3 × × × × × × ×
4 × × × × × × ×

Spanish PhD student Lorea Flores visited the University of Roehampton for three
months;
gathered the “shrimps” from ponds on the campus;
put the combinations of leaves, shrimps and plastic rings into jars;
put one jar of each type onto each of three shelves in a temperature-controlled
room;
measured various responses on each jar (some daily, some at the end).
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Models and data analysis

The models consist of all interactions and sums of those shown in the two
previous diagrams
(the gentle reader can draw her own Hasse diagram!).

Analysis of variance is the standard statistical technique
which enables us to find the most parsimonious model
which explains the data adequately.

RAB gets the data sheet, works out how to do the analysis,
and simply gets out her hand calculator . . .

. . . but the ecologists cannot do this. They can use statistical software to fit each
model, and then use a spreadsheet to subtract sums of squares appropriately.
This is error-prone.

Solution! Summer student Justin Thong dug into the statistical software R to find
a short sequence of commands that gives precisely the right output
(not straightforward, because R makes some stupid assumptions).
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Hooray!

Bailey Experiments in biodiversity RSS, Belfast, 2019 28/29



So what affected the three measured responses?

Individual species numbers;
Plastic rings or not;
Number of plastic rings.

Nothing more complicated, so
not Richness,
not Fractal dimension,
no interactions.
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