

| Outline | Chapter 1 |
| :--- | :--- | :--- |\quad| 1. Square lattice designs. |
| :--- |
| 2. Triple arrays and sesqui-arrays. |
| 3. How the new designs were discovered, part I. |
| 4. Resolvable designs for 36 treatments in blocks of size 6. |
| 5. How the new designs were discovered, part II. |
| 6. As of yesterday, connection with semi-Latin squares. |

Square lattice designs for 16 treatments in 2-4 replicates

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

α	β	γ	δ
γ	δ	α	β
δ	γ	β	α
β	α	δ	γ

Replicate 1				Replicate 2				Replicate 3				Replicate 4			
		9	13	1	2	3	4	1	2	3	4	1	2	3	
	6	10	14	5	6	7	8	6	5	8	7	7	8	5	
	7	11	15	9	10	11	12	11	12	9	10	12	11	10	9
	8	12	16	13	14	15	16	16	15	14	13	14	13	16	

Using a third Latin square orthogonal to the previous two Latin squares gives a fifth replicate, if required.
All pairwise treatment concurrences are in $\{0,1\}$.

Square lattice designs for n^{2} treatments in m blocks of n

Square lattice designs were introduced by Yates (1936).
They have n^{2} treatments, arranged in r replicates, each replicate consisting of n blocks of size n.

Construction

1. Write the treatments in an $n \times n$ square array.
2. The blocks of Replicate 1 are given by the rows; the blocks of Replicate 2 are given by the columns.
3. If $r=2$ then STOP.
4. Otherwise, write down $r-2$ mutually orthogonal Latin squares of order n.
5. For $i=3$ to r, the blocks of Replicate i correspond to the letters in Latin square $i-2$.

Cheng and Bailey (1991) showed that these designs are optimal among block designs of this size, even over non-resolvable designs. 36 treatments

Side remark	Efficiency factors and optimality	
Square lattice designs were independently invented and called nets by Baer in 1939. Most of the literature on square lattice designs is by people who have never heard of nets, and vice versa.		Given an incomplete-block design for a set \mathcal{T} of treatments in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i, j)-entry equal to the number of blocks in which treatments i and j both occur, and the information matrix is $I-(r k)^{-1} \Lambda$. The constant vectors are in the kernel of the information matrix. The eigenvalues for the other eigenvectors are called canonical efficiency factors: the larger the better. Let μ_{A} be the harmonic mean of the canonical efficiency factors. The average variance of the estimate of a difference between two treatments in this design is $\frac{1}{\mu_{A}} \times \begin{aligned} & \text { the average variance in an experiment } \\ & \text { with the same resources but no blocks } \end{aligned}$ So $\mu_{A} \leq 1$, and a design maximizing μ_{A}, for given values of r and k and number of treatments, is A-optimal.

Chapter 3

How the new designs were discovered, part I.

Bailey
36 treatments

Chapter 4

Resolvable designs for 36 treatments in blocks of size 6 .

Bailey \qquad
\qquad
\qquad 17/44 Bailey
has 6 vertices, one in each row and one in each column.
The Sylvester graph Σ is a graph on 36 vertices with valency 5 . It has a transitive group of automorphisms, so it looks the same from each vertex.

The vertices can be thought of as the cells of a 6×6 grid.
 reatments

Starfish whose centres are in the same column	The galaxy of starfish centered on column 3

If there is an edge from a to c and an edge from b to c then the starfish $S(c)$ has two vertices in the third column. This cannot happen,
so the starfish $S(a)$ and $S(b)$ have no vertices in common.
So, for any one column,
the 6 starfish centred on vertices in that column do not overlap, and so they give a single replicate of 6 blocks of size 6 .

D	A	B^{*}	C	E	F
F	E	C^{*}	B	D	A
E	B	A^{*}	D	F	C
B	F	D^{*}	A	C	E
A	C	E^{*}	F	B	D
C	D	F^{*}	E	A	B

This is a Latin square.

Constructing resolved designs with r replicates

For $r=2$ or $r=3$:
Replicate 1 the blocks are the rows of the grid
Replicate 2 the blocks are the columns of the grid
Replicate 3 the blocks are the starfish of one particular column
These are square lattice designs.
For $r=4$ or $r=5$ we can construct very efficient resolved designs using some of
all rows of the grid
all columns of the grid
all starfish of some columns.
Note that, if there is an edge from a to c, then treatments a and c both occur in both starfish $S(a)$ and $S(c)$.
So if we use the galaxies of starfish of two or more columns then some treatment concurrences will be bigger than 1 .
The fine details of which designs we chose will be shown later.

More properties of the Sylvester graph

Vertices at distance 2 from a are all in rows and columns different from a.
The Sylvester graph has no triangles or quadrilaterals.
This implies that, if a is any vertex, the vertices at distance 2 from vertex a are precisely those vertices which are not in the starfish $S(a)$ or the row containing a or the column containing a.

Constructing a resolved design with 8 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.
For the 7-th replicate, the blocks are the columns.
For the 8 -th replicate, the blocks are the rows.

$$
\left.\begin{gathered}
\text { concurrence }= \begin{cases}2 & \text { for vertices joined by an edge } \\
1 & \text { otherwise }\end{cases} \\
\text { canonical efficiency factor } \\
\text { multiplicity }
\end{gathered} \right\rvert\, \begin{array}{l|c|c}
\frac{11}{12} & \frac{7}{8} & \frac{13}{16} \\
\hline 10 & 10 & 16
\end{array}
$$

The harmonic mean is $\mu_{A}=0.8549$.
The non-existent design consisting of a balanced design in 7 replicates with one more replicate adjoined would have $A=0.8547$.

Compare this with computer search

When Emlyn Williams saw what we had done, he was motivated to re-run that computer search from the 1970s with his current software and hardware.

r	$\mathrm{R}, \mathrm{C}, *^{r-2}$	$\mathrm{C}, *^{r-1}$	$*^{r}$	HDP/ERW	ERW	square lattice
3	0.8235					0.8235
4	0.8380	0.8341	0.8285	0.836	0.8393	0.8400
5	0.8453	0.8422	0.8383		0.8464	0.8485
6	0.8498	0.8473	0.8442		0.8510	0.8537
7	0.8528	0.8507			0.8542	0.8571
8	0.8549				0.8549	0.8547

Highlighted entries correspond to partially balanced designs. Our designs have the small advantage that a late decision to add or drop a replicate leaves a design in the same series.

Chapter 5	Back to the sesqui-arrays
How the new designs were discovered, part II.	These wonderful designs are a fortunate byproduct of a wrong turning in the search for sesqui-arrays. How do we take the one with 7 replicates and turn its dual into a 7×36 sesqui-array with 42 letters?
Bailey	

The story: Part II

RAB: I am typing up some of these new designs. Is your sesqui-array for $n=6$ written out explicitly?
PJC: Not yet. I will just program GAP to do it for me.
A bit later, PJC: Oh no! My construction does not work after all. Each column has the correct set of letters,
but their arrangement in rows is wrong,
because each row has some letters occurring 5 times.

| | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | $*$ | 1 | 1 | 1 | 1 | 1 |
| 2 | 2 | $*$ | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | $*$ | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | $*$ | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | $*$ | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | $*$ |

Forestry to the rescue

Later, PJC: The only hope of putting this right is to permute the letters in each column. I need 6 permutations. Each fixes the first row and one other. The rest of each permutation gives a circle on the other 5 rows, and I want these circles to have every row following each other row exactly once.
RAB: Easy peasy. That is a neighbour-balanced design for 6 treatments in 6 circular blocks of size 5. I made one of those for experiments in forestry 25 years ago.

36 treatments

Ongoing work

We have indeed constructed that 7×36 sesqui-array, and checked all of its properties very carefully, but it is too large to show on a slide using any font large enough for you to read.
We are still re-checking the calculations to compare different designs for smaller values of r.
This is harder than what I showed, because we cannot use the association scheme if we are not using all starfish.
On the other hand, the calculation is made easier by the fact that, because of the large group of automorphisms, if we use the starfish from m columns (where $1 \leq m \leq 5$) it does not matter which subset of m columns we use We are also comparing our designs to Emlyn Williams's. Having the same value of μ_{A} does not imply isomorphism of the block designs, even when the concurrence graphs are isomorphic.

Chapter 6

Semi-Latin squares.

D	ζ	A	ϵ	B^{*}	β	C	γ^{+}	E	δ	F	α
F	δ	E	α	C^{*}	γ	B	β^{+}	D	ϵ	A	ζ
E	β	B	ζ	A^{*}	α	D	δ^{+}	F	γ	C	ϵ
B	ϵ	F	β	D^{*}	δ	A	α^{+}	C	ζ	E	γ
A	γ	C	δ	E^{*}	ϵ	F	ζ^{+}	B	α	D	β
C	α	D	γ	F^{*}	ζ	E	ϵ^{+}	A	β	B	δ

* centre of Latin starfish $\quad{ }^{+}$centre of Greek starfish

Bailey
36 treatments

What is known about good semi-Latin squares with $n=6$?

Good designs have been found by RAB, Gordon Royle and Leonard Soicher, partly by computer search. Independently, Brickell found some in communications theory. In 2013, LHS gave a $(6 \times 6) / 6$ semi-Latin square made superposing Latin squares, so it gives $(6 \times 6) / s$ semi-Latin squares for $2 \leq s \leq 6$. Its automorphism group has order 144; the automorphism group of the starfish design is $\operatorname{Aut}\left(S_{6}\right)$, of order 1440.

s	$*^{s}$	Brickell RAB 1990	GR 1997	Brickell LHS web	LHS 2013	Trojan square
2	0.4889	0.5127	0.5133		0.5116	0.5238
3	0.6730			0.6922	0.6745	0.6939
4	0.7604				0.7614	0.7753
5	0.8111				0.8111	0.8227
6	0.8442				0.8442	0.8537

Do the LHS designs for $s=5$ and $s=6$ have concurrence graph isomorphic to ours? 36 treatments

References: lattice designs		Triple arrays
- Frank Yates (1936): A new method of arranging variety trials involving a large number of varieties. Journal of Agricultural Science 226, 424-455. - R. Baer (1939): Nets and groups I. Transactions of the American Mathematical Society 46, 110-141. - R. A. Bailey and D. Jungnickel (1990): Translation nets and fixed-point-free group automorphisms. Journal of Combinatorial Theory, Series A 55, 1-13. - C.-S. Cheng and R. A. Bailey (1991): Optimality of some two-associate-class partially balanced incomplete-block designs. Annals of Statistics 19, 1667-1671. - H. D. Patterson and E. R. Williams (1976): A new class of resolvable incomplete block designs. Biometrika 63, 83-92.		- D. A. Preece (1966): Some balanced incomplete block designs for two sets of treatments. Biometrika 53, 479-486. - Hiralal Agrawal (1966): Some methods of construction of designs for two-way elimination of heterogeneity- 1 . Journal of the American Statistical Association 61, 1153-1171. - Leon S. Sterling and Nicholas Wormald (1976): A remark on the construction of designs for two-way elimination of heterogeneity. Bulletin of the Australian Mathematical Society 14, 383-388. - John P. McSorley, N. C. K. Phillips, W. D. Wallis and J. L. Yucas (2005): Double arrays, triple arrays and balanced grids. Designs, Codes and Cryptography 35, 21-45. - R. A. Bailey (2017): Relations among partitions. In Surveys in Combinatorics 2017 (eds. Anders Claesson, Mark Dukes, Sergey Kitaev, David Manlove and Kitty Meeks), London Mathematcial Society Lecture Note Series 400, Cambridge University Press, Cambridge, pp. 1-86.

The new stuff	Semi-Latin squares
- R. A. Bailey, Peter J. Cameron and Tomas Nilson (2017): Sesqui-arrays, a generalisation of triple arrays. arXiv:1706.02930. Accepted for Australasian Journal of Combinatorics. - R. F. Bailey keeps a database of distance-regular graphs, including the Sylvester graph, at www.distanceregular.org. - R. A. Bailey (1993): Design of experiments with edge effects and neighbour effects. In The Optimal Design of Forest Experiments and Forest Surveys (eds. K. Rennolls and G. Gertner), University of Greenwich, London, pp. 41-48.	- R. A. Bailey (1990): An efficient semi-Latin square for twelve treatments in blocks of size two. Journal of Statistical Planning and Inference 26, 263-266. - R. A. Bailey and G. Royle (1997): Optimal semi-Latin squares with side six and block size two. Proceedings of the Royal Society, Series A 453, 1903-1914. - E. F. Brickell (1984): A few results in message authentication. Congressus Numerantium 43, 141-154. - Leonard H. Soicher: SOMA update. www.maths.qmul.ac.uk/~leonard/soma/ - Leonard H. Soicher (2013): Optimal and efficient semi-Latin squares. Journal of Statistical Planning and Inference 143, 573-582.

