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Abstract

Group theory is used in (at least) two different ways in the
design of experiments.

The first is in randomization, the process by which an initial
design is turned into the actual layout for the experiment by
applying a permutation of the experimental units, chosen at
random from a certain group of permutations. Which group?
What properties should it have?

The second is in design construction. The set of treatments is
identified with a finite Abelian group, and the blocks are all
translates of one or more initial blocks. The characters of this
group form its dual group: they are the eigenvectors of the
matrix that we need to consider to see how good the proposed
design is.
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First course

Randomization and permutation groups
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Introductory example

I am going to do an experiment to compare 3 varieties of
tomato, so see which gives me the biggest yield
(in weight of fruit per plant).
My greenhouse has room for 9 tomato plants in a row.

position (“plot”) 1 2 3 4 5 6 7 8 9
variety (“treatment”) A A A B B B C C C

In general,

Ω = set of plots
T = set of treatments

f : Ω→ T tells you to put treatment f (ω) on plot ω

Yω = yield on plot ω
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Simplistic assumption

f : Ω→ T tells you to put treatment f (ω) on plot ω

Yω = yield on plot ω

Yω = τf (ω) + εω

τi is an unknown constant depending only on treatment i
(we want to estimate all of these, or, at least, their differences)

εω is a random variable depending only on plot ω
with zero mean, same unknown variance σ2 for all plots,
and independence between different plots.

Put all the yields Yω into a column vector Y. If N = |Ω| then
the N×N covariance matrix Cov(Y) for Y has (ω, ω)-entry
equal to Var(εω) and (α, β)-entry equal to Cov(εα, εβ).
Our assumptions tell us that Cov(Y) = σ2I.
All textbooks tell you how to analyse data under this
assumption, but it is unrealistically simple.
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Completely randomized designs

Start with an initial layout.

Choose a permutation g at random from Sym(Ω) and apply it
to the initial layout before doing the experiment.

Every pair of distinct plots is equally likely to be replaced by
any other pair, so this randomization “makes it reasonable” to
assume that there are unknown constants κ1 and κ2 such that
Cov(Y) = κ1I + κ2(J− I).

The eigenspaces of this are V0 and V⊥0 ,
where V0 is the 1-dimensional subspace of constant vectors.

After the experiment, project the data vector onto V⊥0 .
The covariance matrix of the projected data is effectively scalar,
so it can be analysed by textbook methods.
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General randomization

Sometimes we do not want to use the whole of Sym(Ω)
(examples coming up!).

Let G be a given transitive subgroup of Sym(Ω).

Randomize by using a random permutation from G.

This lets us assume that if (α, β) and (γ, δ) are in the same orbit
of G in its action on Ω×Ω then Cov(Yα, Yβ) = Cov(Yγ, Yδ),
so that Cov(Y) is in the centralizer algebra of G.

If the permutation character of G is multiplicity-free
then we know the eigenspaces of Cov(Y)
even though we do not know its entries.

So we can project the data vector onto each eigenspace
and proceed as before.
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An example with the direct product

The experimenter wants to compare 4 exercise regimes.
8 people will take part for 4 months, changing their regime
each month. Various health indicators will be measured on
each person at the end of each month.

A B C D C B A D
B A D C D C B A
C D A B A D C B
D C B A B A D C

G = S4 × S8, the direct product of S4 and S8
(randomize rows; independently randomize columns).

The orbits on pairs are

{(α, β) : α = β}
{(α, β) : α 6= β but in same row}
{(α, β) : α 6= β but in same column}
{(α, β) : other}
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An example with the direct product: eigenspaces

G = S4 × S8, the direct product of S4 and S8

The orbits on pairs are

{(α, β) : α = β}
{(α, β) : α 6= β but in same row}
{(α, β) : α 6= β but in same column}
{(α, β) : other}

G fixes the vector subspaces V0 (constant vectors, dimension 1),
VR (vectors which are constant on each row, dimension 4),
VC (vectors which are constant on each column, dimension 8),
and the whole space V (dimension 32).

The eigenspaces are

W0 = V0

WR = VR ∩V⊥0
WC = VC ∩V⊥0
W = V ∩ (V0 + VC + VR)

⊥
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An example with the wreath product

An environmental researcher wants to compare 7 different
methods of preparing the soil for a wheat crop
(such as conventional ploughing, various chemicals, etc).
7 different farmers have agreed to take part in the trial,
but each can offer only three fields.

A
B
D

B
C
E

C
D
F

D
E
G

E
F
A

F
G
B

G
A
C

G = S7/S3 = S3 o S7, the wreath product of S3 and S7
(randomize farms;
independently randomize fields within each farm).

The orbits on pairs are
{(α, β) : α = β}
{(α, β) : α 6= β but in same farm}
{(α, β) : other}
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An example with the wreath product: eigenspaces

G = S7/S3 = S3 o S7, the wreath product of S3 and S7
(randomize farms;
independently randomize fields within each farm).

The orbits on pairs are
{(α, β) : α = β}
{(α, β) : α 6= β but in same farm}
{(α, β) : other}

G fixes the vector subspaces V0 (constant vectors, dimension 1),
VF (vectors which are constant on each farm, dimension 7),
and the whole space V (dimension 21).

The eigenspaces are

W0 = V0

WF = VF ∩V⊥0
W = V ∩ (V0 + VF)

⊥
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Direct products and wreath products

The direct product is associative and commutative.

The wreath product is associative but not commutative.

Sn o Sm 6∼= Sm o Sn if n 6= m.
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Partially ordered sets (posets)

crossing nesting
direct product wreath product

G1 ×G2 G1/G2

v v21

v
v

2

1

Iteration gives further posets, such as

(G1 ×G2)/G3

v v
v���

�

@
@

@
@

1 2

3
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General posets

Iterated crossing and nesting gives series-parallel posets only.
It does not give posets such as

v v
v v
@
@
@
@

1 2

3 4

Can we start with the poset P with elements 1, . . . , n
and permutation groups G1, . . . , Gn on Ω1, . . . , Ωn
and then build the new permutation group on Ω1 × · · · ×Ωn?
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That awkward poset: generalized wreath product

v v
v v
@
@
@
@

1 2

3 4

The elements of Ω are 4-tuples in Ω1 ×Ω2 ×Ω3 ×Ω4.
The permutations in the generalized wreath product of
G1, G2, G3 and G4 with respect to this poset are
all combinations of the following:

I permute values of the 1st coordinate by an element of G1;
I permute values of the 2nd coordinate by an element of G2;
I for each value of the 1st coordinate separately,

permute values of the 3rd coordinate by an element of G3;
I for each pair of values of the 1st and 2nd coordinates,

permute values of the 4th coordinate by an element of G4.
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Generalized wreath product: orbits on pairs

If G is the generalized wreath product defined by a poset P ,
then its orbits on pairs are as follows:

for each antichain A in P
for each i in A

for each non-diagonal orbit of Gi on Ωi
combine these with Ωj ×Ωj if j < k ∈ A

diag(Ωj) otherwise.

If each Gi is 2-transitive then A gives a single orbit.
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That example with n = 4

v v
v v
@
@
@
@

1 2

3 4

antichain M1 M2 M3 M4
∅ I I I I
{1} A I J J
{2} I A I J
{3} I I A I
{4} I I I A
{1, 2} A A J J
{2, 3} I A A J
{3, 4} I I A A

The orbital matrices of the generalized wreath product
have the form M1 ⊗M2 ⊗M2 ⊗M4.

Here A denotes any non-identity orbital matrix of the relevant
permutation group.
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Generalized wreath product: partitions of Ω

Each antichain A of P defines a partition
(also called a block system)
of Ω preserved by the generalized wreath product G.
The parts (also known as blocks) are defined by
the values of coordinates j for which j ≥ k ∈ A.
This defines a corresponding vector subspace VA.

If each Gi is 2-transitive then the eigenspaces of the centralizer
algebra are the subspaces WA, where, for each A,
WA is obtained from VA by going orthogonal to all smaller
subspaces defined by antichains.
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That example with n = 4

v v
v v
@
@
@
@

1 2

3 4

V34

V23 V4

V3 V12

V1 V2

V0
@@

@@ @@

@@

@@

��
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�� ��

��

W34 = V24 ∩ (V23 + V4)
⊥

W23 = V23 ∩ (V3 + V12)
⊥

W4 = V4 ∩V⊥12

W3 = V3 ∩V⊥1
W12 = V12 ∩ (V1 + V2)

⊥

W1 = V1 ∩V⊥0
W2 = V2 ∩V⊥0
W0 = V0
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Some comments on history

R. A. Fisher initially advocated randomizing by choosing at
random from among all layouts with a given property.
Frank Yates realised that it was sufficient for every pair of plots
to have the same probability of receiving identical treatments
(with appropriate modifications for blocks, rows, columns, . . . ).
Many people moved on to direct products and wreath products
of symmetric groups.
J. A. Nelder (Proc. Roy. Soc A., 1965) formalized the iteration of
these, but stated several results without proof.
O. Kempthorne, G. Zyskind, S. Addelman, T. N. Throckmorton
and R. F. White (Aeronautical Research Laboratory, Technical
Report, 1961) had the idea for generalized wreath products, but
could not complete it because they did not know enough about
permutation groups or posets.
RAB, Cheryl E. Praeger, C. A. Rowley and T. P. Speed (Proc.
London Math. Soc., 1983) defined generalized wreath products,
gave theory and proofs. 21/34

Back to first example: new topic

position (“plot”) 1 2 3 4 5 6 7 8 9
variety (“treatment”) A A A B B B C C C

What should we do if a random permutation from S9 gives us
AAABBBCCC? Or BCAAACCBB?

Devil 1: I think that nearby plots are alike. If we use this
layout and find differences between varieties, how
can we know that it isn’t just a difference between
regions? Throw that layout away and re-randomize.

Devil 2: If you keep doing that, differences between regions
will contribute more to the estimate of experimental
error than they will to the estimates of differences
between varieties, so you may fail to detect genuine
differences between varieties.

Angel: Can we use a smaller 2-transitive subgroup G and a
special initial layout that ensures that we never get a
series of 3 adjacent plots with the same variety?
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Restricted randomization for the first example

Let H be the elementary Abelian group of order 9.
The semi-direct product H o Aut(H) acts 2-transitively on H,
and preserves the set of 4 partitions of H into cosets of a
subgroup of order 3.

If we can arrange the elements of H in a line in such a way that
none of these partitions has 3 consecutive elements in the same
part, then we are done: use one partition as the initial layout,
and randomize by using a random permutation from
H o Aut(H).

00 01 20 22 10 12 02 11 21
A A C C B B A B C
D E D F D F F E E
G H H G I H I G I
J K L K K J L L J
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Some comments on history

R. A. Fisher corresponded with “Student”, O. Tedin and
H. Jeffreys in the 1920s and 1930s about the bad consequences
of simply throwing away randomized layouts with undesirable
patterns. He explained this well in his 1935 book Design of
Experiments.
This led to Frank Yates’ concentration on pairs of plots.
P. M. Grundy and M. J. R. Healy realised that each symmetric
group could be replaced by any 2-transitive subgroup:
then perhaps a good initial layout can be found.
They gave an example in J. Roy. Stat. Soc. B in 1950.
RAB was employed at the Agricultural Research Council Unit
of Statistics because her DPhil thesis was about finite
permutation groups. This led to a paper on restricted
randomization in Biometrika in 1983.
Plenty of people still advocate using ordinary randomization
and throwing away “bad layouts”, apparently unaware of the
advice from Fisher and Yates. 24/34



Second course

Abelian groups and design construction
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A factorial experiment

In another experiment, treatments are all combinations of 3
varieties of tomato with 3 watering regimes. I have several
greenhouses, all too small to contain all 9 combinations.
Label the varieties 0, 1, 2. Label the watering regimes 0, 1, 2.
Identify T with the Abelian group

H = 〈a, b : a3 = b3 = 1, ab = ba〉;

here aibj is the combination of variety i with watering regime j.
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The dual group, where H = 〈a, b : a3 = b3 = 1, ab = ba〉
A character of H is homomorphism from H to (C,×).
The characters of H form the dual group H∗,
which is isomorphic to H.

1 a a2 b ab a2b b2 ab2 a2b2

I 0 0 0 0 0 0 0 0 0
A 0 1 2 0 1 2 0 1 2
A2 0 2 1 0 2 1 0 2 1
B 0 0 0 1 1 1 2 2 2
B2 0 0 0 2 2 2 1 1 1
AB 0 1 2 1 2 0 2 0 1

A2B2 0 2 1 2 1 0 1 0 2
AB2 0 1 2 2 1 0 1 2 0
A2B 0 2 1 1 0 2 2 1 0

Entry s in this table should be interpreted as ωs where
ω = e2πi/3.
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Main effects and interaction

1 a a2 b ab a2b b2 ab2 a2b2

I 0 0 0 0 0 0 0 0 0
A 0 1 2 0 1 2 0 1 2
A2 0 2 1 0 2 1 0 2 1
B 0 0 0 1 1 1 2 2 2
B2 0 0 0 2 2 2 1 1 1
AB 0 1 2 1 2 0 2 0 1

A2B2 0 2 1 2 1 0 1 0 2
AB2 0 1 2 2 1 0 1 2 0
A2B 0 2 1 1 0 2 2 1 0

I is a constant vector in CΩ.
A and A2 are orthogonal to I; values depend only on the power
of a (the variety): these are called the main effect of variety.
B and B2 give the main effect of watering regime.
The other 4 characters are orthogonal to all of these; take all
values equally often on each variety and each watering regime:
these are the interaction between variety and watering regime.

28/34

Now get real

In practice, data are real numbers,
so we replace each pair χ, χ̄ of complex vectors by
(suitable real multiples of) χ + χ̄ and i(χ− χ̄).

1 a a2 b ab a2b b2 ab2 a2b2

I 1 1 1 1 1 1 1 1 1
A 1 ω ω2 1 ω ω2 1 ω ω2

A2 1 ω2 ω 1 ω2 ω 1 ω2 ω

A + A2 2 −1 −1 2 −1 −1 2 −1 −1
A−A2

i
√

3
0 1 −1 0 1 −1 0 1 −1

Applying A + A2 to the data means for each of the 9 treatments
enables us to estimate the difference between variety 0 and the
average of the other two varieties.

But sticking with the characters makes the design process
easier.
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One scenario

There are 6 greenhouses, each with room for 3 plots.

1
a2b
ab2

a
b

a2b2

a2

ab
b2

1
ab

a2b2

a
a2b
b2

a2

b
ab2

AB = 0 1 2 AB2 = 0 1 2

we can estimate the effects of we can estimate the effects of
A, B and AB2 A, B and AB

The main effects A and B can be estimated with full efficiency.
The interaction effects AB and AB2 have efficiency factor 1/2,
which means that the variance of their estimators is twice what
it would be in an unblocked design of the same size.

30/34



Efficiency factors

Given an incomplete-block design in which
all blocks have size k and all treatments occur r times,
the T × T concurrence matrix Λ has (i, j)-entry equal to the
number of blocks in which treatments i and j both occur,
and the scaled information matrix is I− (rk)−1Λ.
The constant vectors are in the kernel of the scaled information
matrix.
The eigenvalues for the other eigenvectors are called canonical
efficiency factors: the larger the better.
In the preceding example, A, A2, B and B2 have c.e.f. 1,
while AB, A2B2, AB2 and A2B have c.e.f. 1/2.
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Helpful result

Theorem
Suppose that the set T of treatments for an incomplete-block design is
identified with an Abelian group H.
If the (multi-)set of blocks is invariant under translation by H then
1. the characters of H give a basis of eigenvectors of the scaled

information matrix;
2. if χ is a character then χ and χ̄ have the same eigenvalue;
3. the eigenvalue for χ is the inner product of χ with

the row of the scaled information matrix corresponding to
treatment 1.
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Final scenario

There are 9 greenhouses, each with room for 4 plots.

a
a2

b
b2

a2

1
ab
ab2

1
a

a2b
a2b2

ab
a2b
b2

1

a2b
b

ab2

a

b
ab

a2b2

a2

ab2

a2b2

1
b

a2b2

b2

a
ab

b2

ab2

a2

a2b

Λ =




1 a a2 b ab a2b b2 ab2 a2b2

1 4 1 1 1 2 2 1 2 2
a 1 4 1 2 1 2 2 1 2
...

...
...

...
...

...
...

...
...

...




A = ( 1 ω ω2 1 ω ω2 1 ω ω2 )
eigenvalue of Λ is 1; eigenvalue of I−Λ/16 is 15/16.
AB = ( 1 ω ω2 ω ω2 1 ω2 1 ω )
eigenvalue of Λ is 4; eigenvalue of I−Λ/16 is 3/4.
c.e.f.(B) = c.e.f.(A) = 15/16; c.e.f.(AB2) = c.e.f.(AB) = 3/4.
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Some comments on history

R. A. Fisher introduced the use of elementary Abelian groups
for factorial designs in Annals of Eugenics in 1942 and 1945.
D. J. Finney extended this to fractional factorial designs with
many factors in 1945. Only a subgroup of H is used. If this is
well chosen, and interactions among large numbers of factors
can be assumed to be zero, then estimation is still possible.
R. C. Bose and K. Kishen had already used finite Eucliean
geometry in Sankhyā in 1940. R. C. Bose generalized both,
explaining more details, in Sankhyā in 1947. His approach
using finite fields became the paradigm.
RAB showed that Fisher’s method extends to arbitrary finite
Abelian groups in Linear Algebra and its Applications in 1985.
Today, very few statisticians know any group theory.
Who needs theory now that we can find a design by computer
search and analyse the data with standard software?
Who needs statisticians now that we all have computers?
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