

Three types	Hooray for Type I
- A is not zero; - all entries of A are in $\{0,1\}$; - A has zero diagonal; - A has constant row-sums and constant column-sums; - $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric. We say that the design has Type I if $A+A^{\top}$ is completely symmetric; Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$; Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$. If Type I or Type II, then $A^{\top} A$ is completely symmetric, with constant row- and column-sums, so A can be regarded as the incidence matrix of a symmetric 2-design. If Type I , then A has $(t-1) / 2$ non-zero entries in each row and column, and so $t \equiv 3 \bmod 4$. If Type III, then $A^{\top} A$ is not completely symmetric.	Theorem If a WNBD is juxtaposed with a NBD and the result is a WNBD, then the starting WNBD either is a NBD or has Type I. Number the positions in each block $1,2, \ldots$, starting at the windy end. Theorem If a WNBD has the property that each numbered position has all treatments equally often, then it either is a NBD or has Type I.
Bailey Weak neighbour balance	

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$. If t is prime power we can put $A_{i j}=1$ if and only if $j-i$ is a non-zero square in $\mathrm{GF}(t)$. If t is prime then
$t=3 \checkmark$, but too small to separate direct effects from upwind effects
$t=7 \checkmark$, see next slide

Type I and $t=7: 3$ blocks or 9 blocks

(Remember to loop each block into a circle!)

0	1	2	3	4	5	6
0	2	4	6	1	3	5
0	4	1	5	2	6	3

0	1	2	3	4	5	6
0	2	4	6	1	3	5
0	3	6	2	5	1	4
0	4	1	5	2	6	3
0	5	3	1	6	4	2
0	6	5	4	3	2	1

$t=11 \checkmark$
\qquad

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.
Doing this with $t=7$ gives a doubly regular tournament Γ_{2} on 15 vertices with an automorphism π of order 7 . If we can find a Hamiltonian cycle φ which has no edge in common with any of $\pi^{i}(\varphi)$ for $i=1, \ldots, 6$, then $\varphi, \pi(\varphi), \ldots, \pi^{6}(\varphi)$ make a WNBD.

Annual meeting of the Portuguese Mathematical Society, in Lisboã, in the following week in July 2014

When the going got tough in the talks, RAB sat at the back and tried and failed to find such a Hamiltonian cycle φ by hand.

PJC used GAP, and found 120 solutions.

Question				
	treatments	t		$2 t+1$
		doubling		
	matrix	A_{1}	\longrightarrow	A_{2}
	\uparrow		\downarrow	
	digraph	Γ_{1}		Γ_{2}
	\uparrow		\uparrow	
	design	Δ_{1}		Δ_{2}

Could we go directly from Δ_{1} to Δ_{2} ?

Type I designs with rows and columns

Suppose that $t \equiv 3 \bmod 4$ and t is a prime power. Let x be a primitive element of $\mathrm{GF}(t)$.
In the circular sequence

$$
\left(1, x, x^{2}, x^{3}, \ldots, x^{t-1}\right)
$$

the successive differences give all non-zero elements of $\mathrm{GF}(t)$.

$$
\operatorname{Put} \phi=\left(x, 1,0, x^{2}, x^{3}, \ldots, x^{t-1}\right)
$$

If $t \neq 3$ then the number of non-zero squares in the successive differences of ϕ is one different from the number of non-squares in the successive differences of ϕ.

The $t(t-1) / 2$ sequences $s \phi+i$,
where s is a non-zero square in $\mathrm{GF}(t)$ and $i \in \mathrm{GF}(t)$, give a weakly neighbour-balanced design in which every treatment occurs $(t-1) / 2$ times in each numbered position.

That blackboard theorem	
If ϕ is beautiful (the number of non-zero squares in the successive differences of ϕ is one different from the number of non-squares in the successive differences of ϕ) then that straightforward direct construction gives a WNBD for t treatments in $t(t-1) / 2$ blocks of size t.	
If the small thing is beautiful, then the big thing that I make from it has the properties that I want.	New Zealand, September 2014

Type II: $A^{\top} A$ is completely symmetric and $\lambda=1$	Type II: an example with $t=7$
	In Z_{7}, the subset $\{2,4,5,6\}$ is a perfect difference set.
Now we can regard A as the incidence matrix of a 2-design, with blocks labelled so that the diagonal is zero.	$\begin{array}{llllllll\|} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 2 & 4 & 6 & 1 & 3 & 5 \end{array}$
Using familiar tricks for constructing BIBDs (such as perfect difference sets), we can construct WNBDs.	40 4 1 5 2 6 3
We can also take advantage of symmetry to find a single Hamiltonian cycle whose images under a group of automorphisms of Γ give the blocks of the WNBD.	5 0 5 3 1 6 4 2 0 6 5 4 3 2 1 0 1 2 3 4 5 6
If A is itself symmetric then it is the adjacency matrix of a strongly regular graph in which every pair of distinct vertices have the same number of common neighbours (for example, the Shrikandhe graph and the Clebsch graph). Again, familiar tricks and use of symmetry give us WNBDs.	$S=A=\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}\left(\begin{array}{lllllll} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{array}\right)$
	Weak neighbour balance

Type III: $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric, but $A^{\top} A$ and $\left(A+A^{\top}\right)$ are not

If A_{1} has Type I for t treatments then
$\left(\begin{array}{cccc}A_{1} & A_{1}+I_{t} & \ldots & A_{1}+I_{t} \\ A_{1}+I_{t} & A_{1} & \ldots & A_{1}+I_{t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1}+I_{t} & A_{1}+I_{t} & \ldots & A_{1}\end{array}\right)$
has Type III for $m t$ treatments with $\lambda=m(t+1) / 4$
and $\left(\begin{array}{cccc}0 & 1_{t}^{\top} & 0 & 0_{t}^{\top} \\ 0_{t} & A_{1} & 1_{t} & A_{1}^{\top} \\ 0 & 0_{t}^{\top} & 0 & 1_{t}^{\top} \\ 1_{t} & A_{1}^{\top} & 0_{t} & A_{1}\end{array}\right) \quad \begin{aligned} & \text { has Type III for } 2(t+1) \text { treatments } \\ & \text { with } \lambda=(t+1) / 2 .\end{aligned}$
The second type is the adjacency matrix of what
Babai and Cameron call an S-digraph.
$t=3$ leads to the only Type III WNBDs $(t=6$ and $t=8)$ found by KF and AM.

Type III doubling (or multiplying) constructions

Again, is there a way of going directly from the smaller design to the larger one?

