Substitutes for the non-existent square lattice designs for 36 treatments

R. A. Bailey University of St Andrews

British Combinatorial Conference University of Birminham, 30 July 2019 Mini-Symposium on Designs and Latin Squares

Joint work with Peter Cameron (University of St Andrews), Leonard Soicher (Queen Mary University of London) and Emlyn Williams (Australian National University)

1/31

Bailey

esolvable block designs	Square lattice designs			
Trials of new crop varieties typically have a large number of varieties. Even at a well-run testing centre, inhomogeneity among the plots (experimental units) makes it desirable to group the plots into homogeneous blocks, usually too small to contain all the varieties. For management reasons, it is often convenient if the blocks can themselves be grouped into replicates, in such a way that each variety occurs exactly once in each replicate. Such a block design is called resolvable.	Yates (1936, 1937) introduced square lattice designs for this purpose. The number of varieties has the form n^2 for some integer n , and each replicate consists of n blocks of n plots. Imagine the varieties listed in an abstract $n \times n$ square array. The rows of this array form the blocks of the first replicate, and the columns of this array form the blocks of the second replicate. Let r be the number of replicates. If $r > 2$ then $r - 2$ mutually orthogonal Latin squares of order n are needed. For each of these Latin squares, each letter determines a block of size n .			
36 treatments 2/	31 Bailey 36 treatments			

Mutually orthogonal Latin squares	Square lattice designs for 16 varieties in 2–4 replicates				
Definition A pair of Latin squares of order <i>n</i> are orthogonal to each other if, when they are superposed, each letter of one occurs exactly once with each letter of the other. Here are a pair of orthogonal Latin squares of order 4.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
Definition A collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal.	Using a third Latin square orthogonal to the previous two Latin squares gives a fifth replicate, if required. All pairwise variety concurrences are in {0,1}.				

Ef	ficiency factors and optimality	Square lattice designs are optimal		
	Given an incomplete-block design for a set \mathcal{T} of varieties in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i,j) -entry equal to the number of blocks in which treatments i and j both occur, and the scaled information matrix is $I - (rk)^{-1}\Lambda$. The constant vectors are in the null space of the scaled information matrix. The eigenvalues for the other eigenvectors are called canonical efficiency factors: the larger the better. Let μ_A be the harmonic mean of the canonical efficiency factors. The average variance of the estimate of a difference between two varieties in this design is $\frac{1}{\mu_A} \times$ the average variance in an experiment with the same resources but no blocks So $\mu_A \leq 1$, and a design maximizing μ_A , for given values of r		Cheng and Bailey (1991) showed that, if $r \le n + 1$, square lattice designs are optimal among block designs of this size, even over non-resolvable designs.	
Bailey	and k and number of varieties, is A-optimal.	31 Bailey	36 treatments	7/31

١	We have a problem when $n = 6$	A new design problem: sesqui-arrays
Bail	If $n \in \{2,3,4,5,7,8,9\}$ then there is a complete set of $n - 1$ mutually orthogonal Latin squares of order n . Using these gives a square lattice design for n^2 treatments in $n(n + 1)$ blocks of size n , which is a balanced incomplete-block design. There is not even a pair of mutually orthogonal Latin squares of order 6, so square lattice designs for 36 treatments are available for 2 or 3 replicates only. Patterson and Williams (1976) used computer search to find a design for 36 treatments in 4 replicates of blocks of size 6. All pairwise treatment concurrences are in $\{0, 1, 2\}$. The value of its A-criterion μ_A is 0.836, which compares well with the unachievable upper bound of 0.840.	A sesqui-array of order <i>n</i> is an allocation of $n(n + 1)$ letters to the cells of rectangle with $n + 1$ rows and n^2 columns, satisfying conditions (i) and (ii) below. Example with $n = 3$ $\frac{D + H + F + L + E + K + I + G + J}{A + K + I + B + J + G + C + L + H}$ Condition (i) Each letter occurs in all rows except one. Condition (i) Each letter occurs in all rows except one. Condition (ii) Each row has <i>n</i> letters in common with each column.
Bail	ey 36 treatments 8/3	1 Bailey 36 treatments 9/31
	Constructing sesqui-arrays	Naughty but nice

Tomas Nilson (University of mid-Sweden) and Peter Ca hoped to give a general construction of sesqui-arrays fo	on 6 is uniquely BAD amongst positive integers in that	
$n \ge 3$. TN found a general construction, using a pair of mutual	it is big enough to have a pair of orthogonal Latin squares but there are no such squares.	
orthogonal Latin squares of order <i>n</i> . So this works for all positive integers <i>n</i> except for $n \in \{1, 2, 6\}$.	6 is uniquely GOOD amongst positive integers in that the symmetric group S_6 of all permutations of {1,2,3,4,5,	6}
This motivated PJC to find a sesqui-array for $n = 6$.	has an automorphism σ which is not of the form $\sigma(g) = h^2$	⁻¹ gh.
Later, RAB found a simpler version of TN's construction needs a Latin square of order n but not orthogonal Latin squares. So $n = 6$ is covered. If this had been known ear PJC would not have found the nice design for $n = 6$.	which has 36 vertices, all with valency 5.	
36 treatments	10/31 Bailey 36 treatments	

The Sylvester graph	The Sylvester graph and its starfish
The vertices can be thought of as the cells of a 6×6 grid. 1 2 3 4 5 6 \mathcal{F} \mathcal{G}	The Sylvester graph Σ has a transitive group of automorphisms (permutations of the vertices which take edges to edges), so it looks the same from each vertex.
$ \mathcal{F} = 12 34 56 13 25 46 14 26 35 15 24 36 16 23 45 \mathcal{G} = 12 34 56 23 15 46 24 16 35 25 14 36 26 13 45 = \mathcal{F}^{(12)} $	
Automorphisms: S_6 on rows and on columns at the same time; the outer automorphism of S_6 swaps rows with columns.	At each vertex a , the <i>starfish</i> $S(a)$ defined by the 5 edges at a has 6 vertices, one in each row and one in each column. Balley 36 treatments 13/31

Constructing resolved designs with r replicates	More properties of the Sylvester graph
For $r = 2$ or $r = 3$: Replicate 1 the blocks are the rows of the grid Replicate 2 the blocks are the columns of the grid Replicate 3 the blocks are the starfish of one particular column These are square lattice designs. For $r = 4$, $r = 5$, $r = 6$, $r = 7$ or $r = 8$ we can construct very efficient resolved designs using some of all rows of the grid all columns of the grid all starfish of some columns. Note that, if there is an edge from <i>a</i> to <i>c</i> in the graph, then varieties <i>a</i> and <i>c</i> both occur in both starfish $S(a)$ and $S(c)$. So if we use the galaxies of starfish of two or more columns then some treatment concurrences will be bigger than 1.	Vertices at distance 2 from <i>a</i> are all in rows and columns different from <i>a</i> . The Sylvester graph has no triangles or quadrilaterals. This implies that, if <i>a</i> is any vertex, the vertices at distance 2 from vertex <i>a</i> are precisely those vertices which are not in the starfish <i>S</i> (<i>a</i>) or the row containing <i>a</i> or the column containing <i>a</i> .
Bailey 36 treatments 18/3:	Bailey 36 treatments 19/31

Consquence: concurrences	Our designs
The Sylvester graph has no triangles or quadrilaterals. Consequence If we make each starfish into a block, then the only way that distinct treatments <i>a</i> and <i>d</i> can occur together in more than one block is for vertices <i>a</i> and <i>d</i> to be joined by an edge so that they both occur in the starfish $S(a)$ and $S(d)$. U	 *^m galaxies of starfish from <i>m</i> columns, where 1 ≤ <i>m</i> ≤ 6 R, *^m all rows; galaxies of starfish from <i>m</i> columns C, *^m all columns; galaxies of starfish from <i>m</i> columns R, C, *^m all rows; all columns; galaxies of starfish from <i>m</i> columns, If <i>m</i> = 6 then the design is partially balanced with respect to the association scheme whose classes are edges; pairs at distance 2; pairs in the same row; pairs in the same column: so we can easily calculate the canonical efficiency factors. Otherwise, we use computational algebra (GAP) to calculate them exactly. The large group of automorphisms tell us that the design C, *^m; if we use the galaxies of starfish from <i>m</i> columns it does not matter which subset of <i>m</i> columns we use.
aucy 50 treatments 20	Jo deatments 21/3

Val	Values of μ_A for our designs						P	ersonal communication from Emlyn Williams	
	r	R, C, * ^{r-2}	C, * ^{<i>r</i>-1}	*"	HDP/ERW 1976	square lattice		I gave a talk about these designs in August 2017 at the meeting on <i>Latest advances in the theory and applications of</i> <i>design and analysis of experiments</i> in the Banff International Research Station in Canada.	
	3	0.8235				0.8235		They video all lectures, and make them available on the web.	
	4	0.8380	0.8341	0.8285		0.8400		Emlyn Williams learnt about this,	
	5	0.8453	0.8422	0.8383		0.8485		and watched the video of my lecture.	
	6	0.8498	0.8473	0.8442		0.8537		This motivated him to re-run that computer search from the	
	7	0.8528	0.8507			0.8571		1970s with a more up-to-date version of his search program	
	8	0.8549				0.8547		on a more up-to date computer.	
	Highlighted entries correspond to partially balanced designs. Blue entries correspond to designs which do not exist.							Thus he found resolvable designs for 36 varieties in up to eight replicates of blocks of size six.	
								All concurrences are in $\{0, 1, 2\}$.	
								He emailed me these results in September 2017.	
Bailey				36 treatments			22/31 Bailey	36 treatments	23/31

Another connection	What is a semi-Latin square?
I gave another talk about these designs in February 2018 in a seminar in St Andrews. As I was preparing the talk (the day before), I realised a connection with some other designs that I have studied, called semi-Latin squares.	Definition A $(n \times n)/s$ semi-Latin square is an arrangement of <i>ns</i> letters in n^2 blocks of size <i>s</i> which are laid out in a $n \times n$ square in such a way that each letter occurs once in each row and once in each column.
Bailey 36 treatments 24,	/31 Bailey 36 treatments 25/3

A $(6 \times 6)/2$ semi-Latin square	From semi-Latin square to block design
A L F K C H B G D I E J C I B J E F H L G K A D E K H I D G A F J L B C D J A E I L C K B F G H F G C D A B I J E H K L B H G L J K D E A C F I This one is not made from two Latin squares.	 Suppose that we have a (n × n)/s semi-Latin square. Construction Write the n² varieties in an n × n square array. Each of the ns letters gives a block of n varieties. If the semi-Latin square is made by superposing s Latin squares then the block design is resolvable.
Bailey 36 treatments 26	5/31 Bailey 36 treatments 27

Good leads to good What is known about good semi-Latin squares with n = 6? Good designs have been found by RAB, Gordon Royle and Leonard Soicher, partly by computer search. Independently, Brickell (1984) found some in communications theory. In 2013, LHS gave a $(6 \times 6)/6$ semi-Latin square made **Theorem** If the block design has A-criterion μ_A and the semi-Latin square has A-criterion λ_A then superposing Latin squares, so it gives $(6 \times 6)/s$ semi-Latin squares for $2 \le s \le 6$. The table shows values of λ_A . $\frac{35}{\mu_A} = 6(6-s) + \frac{6s-1}{\lambda_A}.$ not superposed Latin squares Brickell RAB/GR Brickell MOLS RAB 1990 1997 LHS web LHS 2013 SLS *s So maximizing μ_A is the same as maximizing λ_A (among semi-Latin squares which are superpositions of Latin squares, if we insist on resolvable designs).
 5
 *

 2
 0.4889

 3
 0.6730

 4
 0.7604

 5
 0.8111
 0.5127 0.5133 0.5116 0.5238 0.6939 0.7753 0.8227 0.6922 0.6745 0.7614 0.8111 6 0.8442 0.8442 0.8537 partially balanced do not exist

Semi-Latin square to block design: again	Are any of these designs the same?
Just as with the designs made from the Sylvester graph, if we make a block design from a semi-Latin square then we have the option of including another replicate whose blocks are the rows and another replicate whose blocks are the columns. As before, these two special replicates give us better designs than just using a semi-Latin square with 12 more letters.	RAB/PJCLHSsquarerR, C, *^{r-2}+R, CERWlattice40.83800.83930.83930.840050.84530.84560.84640.848560.84980.85010.85100.853770.85280.85290.85420.857180.85990.85490.85470.8547
Bailey 36 treatments 30/31	Bailey 36 treatments 31/3