Substitutes for the non-existent square lattice designs for 36 treatments

R. A. Bailey

University of St Andrews

British Combinatorial Conference
University of Birminham, 30 July 2019
Mini-Symposium on Designs and Latin Squares
Joint work with Peter Cameron (University of St Andrews), Leonard Soicher (Queen Mary University of London) and Emlyn Williams (Australian National University)

We have a problem when $n=6$

If $n \in\{2,3,4,5,7,8,9\}$ then there is a complete set of $n-1$ mutually orthogonal Latin squares of order n.

Using these gives a square lattice design
for n^{2} treatments in $n(n+1)$ blocks of size n
which is a balanced incomplete-block design.
There is not even a pair of mutually orthogonal Latin squares of order 6 , so square lattice designs for 36 treatments are available for 2 or 3 replicates only.
Patterson and Williams (1976) used computer search to find a design for 36 treatments in 4 replicates of blocks of size 6 . All pairwise treatment concurrences are in $\{0,1,2\}$. The value of its A-criterion μ_{A} is 0.836 , which compares well with the unachievable upper bound of 0.840 .

A new design problem: sesqui-arrays

A sesqui-array of order n is an allocation of $n(n+1)$ letters to the cells of rectangle with $n+1$ rows and n^{2} columns, satisfying conditions (i) and (ii) below.
Example with $n=3$

D	H	F	L	E	K	I	G	J
A	K	I	B	J	G	C	L	H
J	A	L	D	B	F	K	E	C
G	E	A	H	I	B	D	C	F

Condition (i) Each letter occurs in all rows except one.
Condition (ii) Each row has n letters in common with each column.

Automorphisms: S_{6} on rows and on columns at the same time; the outer automorphism of S_{6} swaps rows with columns.

The Sylvester graph and its starfish

The Sylvester graph Σ has a transitive group of automorphisms (permutations of the vertices which take edges to edges), so it looks the same from each vertex.

At each vertex a, the starfish $S(a)$ defined by the 5 edges at a has 6 vertices, one in each row and one in each column.

Constructing resolved designs with r replicates

For $r=2$ or $r=3$:
Replicate 1 the blocks are the rows of the grid
Replicate 2 the blocks are the columns of the grid
Replicate 3 the blocks are the starfish of one particular column
These are square lattice designs.
For $r=4, r=5, r=6, r=7$ or $r=8$ we can construct
very efficient resolved designs using some of
all rows of the grid
all columns of the grid
all starfish of some columns.
Note that, if there is an edge from a to c in the graph, then varieties a and c both occur in both starfish $S(a)$ and $S(c)$. So if we use the galaxies of starfish of two or more columns then some treatment concurrences will be bigger than 1 .

More properties of the Sylvester graph

Vertices at distance 2 from a are all in rows and columns different from a.
The Sylvester graph has no triangles or quadrilaterals.
This implies that, if a is any vertex, the vertices at distance 2 from vertex a are precisely those vertices which are not in the starfish $S(a)$ or the row containing a or the column containing a.

Another connection	What is a semi-Latin square?
I gave another talk about these designs in February 2018 in a seminar in St Andrews.	
As I was preparing the talk (the day before), I realised a connection with some other designs that I have studied, called semi-Latin squares.	Definition A $n \times n) / s$ semi-Latin square is an arrangement of $n s$ letters in n^{2} blocks of size s which are laid out in a $n \times n$ square in such a way that each letter occurs once in each row and once in each column.
Bailey	

Semi-Latin square to block design: again

Just as with the designs made from the Sylvester graph, if we make a block design from a semi-Latin square then we have the option of including another replicate whose blocks are the rows and another replicate whose blocks are the columns.
As before, these two special replicates give us better designs than just using a semi-Latin square with 12 more letters.

Are any of these designs the same?

r	RAB/PJC $\mathrm{R}, \mathrm{C}, *^{r-2}$	LHS $+\mathrm{R}, \mathrm{C}$	ERW	square lattice
4	0.8380	0.8393	0.8393	0.8400
5	0.8453	0.8456	0.8464	0.8485
6	0.8498	0.8501	0.8510	0.8537
7	0.8528	0.8528	0.8542	0.8571
8	0.8549	0.8549	0.8549	0.8547

It is possible that the LHS and ERW designs for $r=4$ are isomorphic, and that the RAB/PJC and LHS designs for $r=7$ are isomorphic. Otherwise, for $4 \leq r \leq 7$, the efficiency factors of the three new designs differ slightly, so no pair of the new designs are isomorphic.
For $r=8$, all three new designs have the same efficiency factor. Their concurrence matrices are the same up to permutation of the treatments. Their automorphism groups have order 1440, 144 and 1 respectively, so no pair are isomorphic.

