

An example of three uniform partitions of the same set	What is a design?
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A design is a collection of partitions on a (finite) set. What are the relations among those partitions?
Three binary relations:	
• $G \prec D$, <i>G</i> is a refinement of <i>D</i> ;	
• $L \perp D$, <i>L</i> is strictly orthogonal to <i>D</i> ;	
• $L \triangleright G$, <i>L</i> is balanced with respect to <i>G</i> .	
Bailey BCC2017 Relations among partitions 3/44	Bailey BCC2017 Relations among partitions 4/44

Uniform partitions	Some definitions for a uniform partition of a finite set
Definition Let Ω be a finite set, and let <i>F</i> be a partition of Ω . Then <i>F</i> is uniform (or balanced or homogeneous or proper or equireplicate or regular) if all parts of <i>F</i> have the same size.	$\Omega \text{ is the underlying set, of size } e.$ $V_0 = \text{ subspace of } \mathbb{R}^{\Omega} \text{ consisting of constant vectors.}$ For a given uniform partition F : $n_F = \text{ number of parts of } F;$ $k_F = \text{ size of each part of } F;$ $V_F = \text{ subspace of } \mathbb{R}^{\Omega} \text{ consisting of vectors which are constant on each part of } F;$ $V_0 \leq V_F \text{ and } \dim(V_F) = n_F;$ $X_F \text{ is the } e \times n_F \text{ incidence matrix of elements of } \Omega \text{ in parts of } F;$ $P_F = \frac{1}{k_F} X_F X_F^T = \text{ matrix of orthogonal projection onto } V_F, \text{ which averages each vector over each part of } F.$
Bailey BCC2017 Relations among partitions 5/4	Bailey BCC2017 Relations among partitions 6/4

Two partitions: incidence marix	Refinement
Definition If <i>F</i> and <i>G</i> are partitions of Ω then the $n_F \times n_G$ incidence matrix N_{FG} is defined by $N_{FG} = X_F^T X_G$. The entry in row <i>i</i> and column <i>j</i> is the size of the intersection of the <i>i</i> -th part of <i>F</i> with the <i>j</i> -th part of <i>G</i> .	Definition Let <i>F</i> and <i>G</i> be partitions of Ω . Then <i>F</i> is finer than <i>G</i> (written $F \prec G$) if each part of <i>F</i> is contained in a single part of <i>G</i> but $n_F > n_G$. If $F \prec G$ then $V_G < V_F$. If <i>U</i> is the partition with a single part, and <i>E</i> is the partition into singletons, then $E \preceq F \preceq U$ for all partitions <i>F</i> . $V_E = \mathbb{R}^{\Omega}$ $V_U = V_0$ = subspace of constant vectors The relation \preceq is a partial order . The infimum $F \land G$ is the coarsest partition finer than, or equal to, both <i>F</i> and <i>G</i> . The supremum $F \lor G$ is the finest partition coarser than, or equal to, both <i>F</i> and <i>G</i> . Theorem $V_F \cap V_G = V_{F \lor G}$.
Bailey BCC2017 Relations among partitions	7/44Bailey BCC2017 Relations among partitions 8/44

Strict orthogonality		Orthogonal arrays
$P_F = \text{ projector on } V$ $F(\omega) = \text{ the part}$ If <i>F</i> and <i>G</i> are partitic so these spaces cannot	$F_G = \text{similar}; P_0 = \text{projector on } V_0.$ of <i>F</i> containing element ω of Ω . Ins then V_F and V_G both contain V_0 , t be orthogonal to each other.	Definition An orthogonal array of strength two is a collection of at least two uniform partitions on a finite set with the property that each pair is strictly orthogonal. Example (11 partitions with 2 parts of size 6)
Definition Partitions F and G are (written $F \perp G$) if (V_F)	strictly orthogonal to each other V_0^{\perp}) \perp ($V_G \cap V_0^{\perp}$).	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Equivalent condition $(V_F \cap V_0^{\perp}) \perp (V_G \cap X_F^{\top}(I - P_0)X_G = P_F P_G = P_G P_F = P_G P$	ns Mode of thinking V_0^{\perp}) angles between subspaces 0 matrix equation 0 matrix equation Ω^{\mid} a counting equation —proportional meeting	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Bailey BCC2017	Relations among partitions 9/4	$H_{\text{Bailey}} = F_{11\text{BCC}} \theta_{017} 1 0 0 0 1 \text{Belatiches and no nertified s} 1 10/44$

General orthogonality	Why orthogonal projection? Back to gardening experiment
In general, $V_F \cap V_G = V_{F \lor G}$, where $F \lor G$ is the supremum of F and G . Definition Partitions F and G are orthogonal to each other (written $F \perp G$) if $(V_F \cap V_{F \lor G}^{\perp}) \perp (V_G \cap V_{F \lor G}^{\perp})$. Equivalently, $\triangleright X_F^{\top}(I - P_{F \lor G})X_G = 0;$ $\triangleright P_F P_G = P_G P_F$ (projectors commute); \triangleright proportional meeting within each part of $F \lor G$. If $F \preceq G$ then $F \perp G$. In particular, $F \perp F$ for all partitions F .	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Bailey BCC2017 Relations among partitions 11/44	Bailey BCC2017 Relations among partitions 12/44

Orthogonality: recap	Adjusted orthogonality
$P_0 =$ projector onto space V_0 of constant vectors. $F \perp G$ means that $(I - P_0)(V_F) \perp (I - P_0)(V_G)$; equivalently, $X_F^{\top}(I - P_0)X_G = 0$.We could say that F is orthogonal to G after adjusting for the partition U with a single part. $F \perp G$ means that $(I - P_{F \vee G})(V_F) \perp (I - P_{F \vee G})(V_G)$; equivalently, $X_F^{\top}(I - P_{F \vee G})X_G = 0$.We could say that F is orthogonal to G after adjusting for their supremum $F \vee G$.	Name of the gonality $N_{RC} = X_R^\top X_C = n_R \times n_C$ incidence matrix of <i>R</i> -parts with <i>C</i> -partsDefinitionLet <i>R</i> (rows), <i>C</i> (columns) and <i>L</i> (letters) be three partitions on a finite set Ω . Then <i>R</i> and <i>C</i> have adjusted orthogonality with respect to <i>L</i> if $(I - P_L)(V_R) \perp (I - P_L)(V_C)$.Equivalent conditionsMode of thinking $(I - P_L)(V_R) \perp (I - P_L)(V_C)$ Equivalent conditionsMode of thinking $(I - P_L)(V_R) \perp (I - P_L)(V_C)$ angles between subspaces $X_R^\top (I - P_L) X_C = 0$ $X_R^\top X_C = X_R^\top P_L X_C$ matrix equationif <i>L</i> is uniform, $k_L N_{RC} = N_{RL} N_{LC}$ counting equationThe number of letters in common to row <i>i</i> and column <i>j</i> is $k_L \times row i \cap column j $.
Bailey BCC2017 Relations among partitions 13/44	Bailey BCC2017 Relations among partitions 14/44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 Ω = 30; 5 rows, each of size 6; 5 columns, each of size 6; 10 letters, each of "size" 3. The number of letters in common to row <i>i</i> and column <i>j</i> is 6 if <i>i</i> = <i>j</i> 3 otherwise. 	 Ω = 30; 5 rows, each of size 6; 6 columns, each of size 5; 10 letters, each of "size" 3. The number of letters in common to row <i>i</i> and column <i>j</i> is always 3. This is a consequence of adjusted orthogonality if <i>R</i>⊥<i>C</i> and <i>R</i> ∧ <i>C</i> is uniform.

Sc	me comments			Am	ore general version o	f adjusted orthogonality	
	Agrawal (1966) and Preece (1966) introd of adjusted orthogonality in contempora but they neither defined it nor named it. It had been previously used in isolated e It was introduced, but not named, indep authors in the next decade. Eccleston and Russell (1975) independer concept; they named it in a 1977 paper. It took a while before <i>adjusted orthogonali</i>	uced the general idea ineous papers, examples. endently by several atly introduced the <i>ity</i> became the standard		I E I Z	Eccleston and Russell (197 general definition. Definition Let \mathcal{L} be a set of partitions and let $P_{\mathcal{L}}$ be the matrix of	75) actually proposed this more is of Ω . Put $V_{\mathcal{L}} = \sum_{L \in \mathcal{L}} V_L$ if orthogonal projection onto $V_{\mathcal{L}}$. There have a projection onto $V_{\mathcal{L}}$. There	1
Bailey	wording, so my survey may have missed Part of the difficulty may have been the thinking (angles between subspaces; ma counting equation) about equivalent ver Some results are obvious in one mode of others.	d some references. three modes of trix equations; a sions of the definition. f thinking but not in the among partitions	17/44Ba	ailey	K and C have adjusted off $X_R^ op$ ($(I - P_{\mathcal{L}})X_{\mathcal{C}} = 0.$ Relations among partitions	18/44

What about adjusted uniformity?	Balance
$\boxed{N_{FG} = X_F^\top X_G}$ We have seen how the relationship between two partitions is modified if we project onto the orthogonal complement of the subspace corresponding to a third partition. But what happens to properties of a single partition when we project like this? Partition <i>L</i> is uniform means that $X_L^\top X_L = N_{LL} =$ diagonal matrix of sizes of parts of <i>L</i> is a (non-zero) multiple of the identity matrix <i>I</i> of order <i>n</i> _L . This is a special case of a completely symmetric matrix (a linear combination of <i>I</i> and the all-1 matrix <i>J</i>). So to say that <i>L</i> has adjusted uniformity with respect to partition <i>B</i> should mean that $X_L^\top (I - P_B) X_L$ is completely symmetric but not zero. But $X_L^\top (I - P_B) X_L = N_{LL} - \frac{1}{k_B} N_{LB} N_{BL}$: you might recognise this condition. But $X_L^\top (I - P_B) X_L = N_{LL} - \frac{1}{k_B} N_{LB} N_{BL}$: You might recognise this	Definition Let L and B be uniform partitions of Ω. Then L is balanced with respect to B if $X_L^{\top}(I - P_B)X_L = N_{LL} - \frac{1}{k_B}N_{LB}N_{BL}$ is completely symmetric but not zero. • 'Non-zero' excludes $B \leq L$ but does not exclude $B \perp L$. • The (i, j) -entry of $N_{LB}N_{BL}$ is the number of times that letters i and j concur in blocks (allowing for multiplicities). • Statisticians always call this property 'balance', but some of you may say that the parts of L and B form the points and blocks of a 2-design. Definition The relationship between L and B is binary if all parts of L ∧ B are singletons; it is generalized binary if no pair of parts of L ∧ B have sizes differing by more than one. Balley BCC2017
Balance, continued	Two block designs in which letters are balanced with
Write $L \triangleright B$ if <i>L</i> is balanced with respect to <i>B</i> but <i>L</i> is not strictly orthogonal to <i>B</i> .	respect to blocks, which are represented by countins
Write $L \triangleright B$ if $L \triangleright B$ and the relationship beween L and B is (generalized) binary.	A B C D E F G A B C D E F G
Write $L \bowtie B$ if $L \triangleright B$ and $B \triangleright L$. If the relationship between L and B is binary and $L \bowtie B$, then	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
we have a symmetric balanced incomplete-block design.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} F & F & F & F & F & F & F & F \\ \hline G & G & G & G & G & G & G & E & F & G & A & B & C & D \\ (a) & & & (b) & & & & & & & & & \\ \end{bmatrix}$
In the gardening experiment, $L \triangleright G$ and the relationship is binary.	(a) is generalized binary but not binary; (b) is not generalized binary.
Bailey BCC2017 Relations among partitions 21/44	Bailey BCC2017 Relations among partitions 22/44

A more general version of balance	W	hat about three partitions? Or more?
Definition Let \mathcal{G} be a set of partitions of Ω . Put $V_{\mathcal{G}} = \sum_{G \in \mathcal{G}} V_G$ and let $P_{\mathcal{G}}$ be the matrix of orthogonal projection onto $V_{\mathcal{G}}$. Then L is balanced with respect to \mathcal{G} if $X_L^{\top}(I - P_{\mathcal{G}})X_L$ is completely symmetric but not zero.		Let <i>R</i> , <i>C</i> and <i>L</i> be uniform partitions of Ω . If all three pairwise relations are orthogonality (possibly including refinement) then we get a nice decomposition of \mathbb{R}^{Ω} into orthogonal subspaces, and each pair has adjusted orthogonality with respect to the third. Suppose that $R \perp C$, $R \perp L$ and $L \triangleright C$. • Projecting onto V_R^{\perp} leaves $V_C \cap V_0^{\perp}$ and $V_L \cap V_0^{\perp}$ unchanged, so the relation between <i>L</i> and <i>C</i> is unchanged. • Projecting onto V_L^{\perp} leaves $V_R \cap V_0^{\perp}$ unchanged and leaves $V_C \cap V_0^{\perp}$ inside $V_L + V_C$, which is orthogonal to $V_R \cap V_0^{\perp}$, so <i>R</i> and <i>C</i> have adjusted orthogonality with respect to <i>L</i> . More generally, given a set \mathcal{F} of partitions, if each <i>F</i> in \mathcal{F} is non-orthogonal to at most one of the others then the pairwise relations suffice to describe the system.
Bailey BCC2017 Relations among partitions	23/44Bailey	BCC2017 Relations among partitions 24/

Youden squares	Double Youden rectangles
Definition (Youden, 1937) An $n \times m$ Youden square is a set of size nm with uniform partitions into n rows (R), m columns (C) and m letters (L) such that all pairwise relations are binary, $R \perp C$, $R \perp L$ and $L \bowtie C$. Example ($n = 3$ and $m = 7$)	Definition (Bailey, 1989) An $n \times m$ double Youden rectangle is a set of size nm with uniform partitions into n rows (R), m columns (C), m Latin letters (L) and n Greek letters (G) such that all pairwise relations (apart from that between R and G) are binary, $R \perp C$, $R \perp L$, $G \perp C$, $G \perp L$, $L \bowtie C$ and $R \bowtie G$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Example ($n = 4$ and $m = 13$, Preece (1982))
Theorem <i>Every symmetric balanced incomplete-block design can be arranged</i> <i>as a Youden square.</i>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Proof. Use Hall's Marriage Theorem to sequentially choose the letters in each row as a set of distinct representatives.	$10 \ \bigcirc 2 \ \bigstar Q \ \bigstar 5 \ \clubsuit A \ \oslash 6 \ \oslash 3 \ \oslash 4 \ \diamondsuit 9 \ \diamondsuit J \ \bigstar 7 \ \bigstar 8 \ \diamondsuit K \ \bigstar$
Bailey BCC2017 Relations among partitions 25/44	Bailey BCC2017 Relations among partitions 26/44

Tri	ple arrays	Extremal triple arrays		
	Definition (McSorley, Phillips, Wallis and Yucas, 2005) An $r \times c$ rectangle with one of v letters allocated to each cell is an triple array if all partitions are uniform, all pairwise relations are binary, $R \perp C$, $R \triangleright L$, $C \triangleright L$ and R and C have adjusted orthogonality with respect to L . So $n_R = r = k_C$, $n_C = c = k_R$, $n_L = v$ and $k_L = rc/v$.	Theorem (Bagchi, 1998) If a triple array has r rows, c columns and v letters then $v \ge r + c - 1$. Definition A triple array is extremal if $v = r + c - 1$.		
	Also, every pair of rows have the same number of letters in common, every pair of columns have the same number of letters in common, and every row has k_L letters in common with every column. These are among the designs discussed by Preece (1966) and Agrawal (1966).	 Given an extremal triple array, the following construction gives a symmetric balanced incomplete-block design (SBIBD) for <i>r</i> + <i>c</i> points in blocks of size <i>r</i>. 1. The points are the (names of the) rows and columns. 2. Each letter gives a block, consisting of the columns in which it occurs and the rows in which it does not occur. 3. The final block contains (the names of) all the rows. 		
Bailov	BCC2017 Relations among partitions 27/44	/44Railey BCC2017 Relations among partitions 28/		

An extremal triple array with $r = 5$, $c = 6$ and $v = 10$	Triple array to SBIBD
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bailey BCC2017 Relations among partitions	29/44Bailey BCC2017 Relations among partitions 30/44

Start wit	h a	SB	IBE	D: car	ı w	e co	onstruct the triple array?	Problem: can you do it?						
		1 4 9 5 3	A 2 5 X 6 4	B C 3 4 6 7 0 1 7 8 5 6	D 5 8 2 9 7	E 6 9 3 X 8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Given a subset of letters allowed for each cell, is it possible to choose an array of distinct representatives , one per cell, so that no letter is repeated in a row or column? Fon-der-Flaass, 1997: the general problem is NP-complete. Suppose the allowable subsets come from an SBIBD in the way that I showed?						
$ \begin{array}{c} 1\\ 4\\ 9\\ 5\\ 3 \end{array} $	0	2	6	7 BDF	8	X	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 Not if the allowable subsets have size ≤ 2. Agrawal (1966): if k_L > 2 then it was "always possible in the examples tried by the author". Rhagavarao and Nageswararao (1974): two false proofs. Seberry (1979); Street (1981); Bailey and Heidtmann (1994); Bagchi (1998): Prece. Wallis and Yucas (2005) gave explicit 						
column name is in ^{Bailey}	B F G H J	А D H I J во	А В С Е	B C D F I	C D G J	A E F G I	Put one letter in each cell and obtain these subsets in rows and columns Relations among partitions 31/4	 Computer search always gives a positive result if k_L > 2. Your task: Proof or counter-example. Bulley 						

Look at balance again	Balance among three or more uniform partitions
$P_F = \text{matrix of orthogonal projection onto } V_F$ $P_0 = \text{matrix of orthogonal projection onto } V_0$ $Put Q_F = P_F - P_0.$ <i>F</i> is balanced with respect to <i>G</i> means that $N_{FG}N_{GF} \text{ is completely symmetric but not scalar; equivalently}$ $X_F^T (I - P_G)X_F \text{ is completely symmetric but not zero.}$ If we want to exclude strict orthogonality, then the condition becomes $X_F^T (I - P_G)X_F \text{ is completely symmetric but not a multiple of } J.$	If \mathcal{G} is a set of partitions of Ω , $P_{\mathcal{G}} = $ matrix of orthogonal projection onto $\sum_{G \in \mathcal{G}} V_G$. F is balanced with respect to \mathcal{G} if $X_F^{\top}(I - P_G)X_F$ is completely symmetric but not zero. To exclude orthogonality, require that $X_F^{\top}(I - P_G)X_F$ is completely symmetric but not a multiple of J . Equivalently, there is a scalar μ with $0 < \mu < 1$ such that $Q_F Q_G Q_F = \mu Q_F$,
Equivalently, there is a scalar μ with $0 < \mu < 1$ such that $Q_F Q_G Q_F = \mu Q_F$.	where $Q_G = P_G - P_0$. (Statements in the remaining slides may not be consistent about this exclusion.)
Bailey BCC2017 Relations among partitions	33/44Bailey BCC2017 Relations among partitions 34/44

Exactly three partitions	My attempt at a general definition								
Suppose that partitions <i>F</i> , <i>G</i> and <i>H</i> each have <i>n</i> parts of size <i>k</i> , and that each pair are balanced (both ways). Then <i>F</i> is balanced with respect to { <i>G</i> , <i>H</i> } if and only if $N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}$ is completely symmetric. Equivalently, $Q_F(Q_GQ_H + Q_HQ_G)Q_F$ is a non-zero multiple of Q_F . The above is implied by this stronger condition: $N_{FG}N_{GH}$ is a linear combination of N_{FH} and <i>J</i> .	A set \mathcal{F} of uniform partitions of Ω , all with n parts, has universal balance if whenever $F \in \mathcal{F}$ and $\mathcal{L} \subseteq \mathcal{F} \setminus \{F\}$ then F is balanced with respect to \mathcal{L} but $V_F \cap V_0^{\perp}$ is not orthogonal to $V_{\mathcal{L}} \cap V_0^{\perp}$. Equivalently, whenever F and \mathcal{L} are as above, then there is a scalar μ with $0 < \mu < 1$ such that $Q_F Q_{\mathcal{L}} Q_F = \mu Q_F$.								
Bailey BCC2017 Relations among partitions 35/44	Bailey BCC2017 Relations among partitions 36/44								

Ma	atrix conditions for universal balance	Known families, for n parts of size k							
	Theorem If \mathcal{F} has universal balance and $\mathcal{L} \subseteq \mathcal{F}$ then $Q_{\mathcal{L}}$ is a linear combination of products of the matrices Q_L for L in \mathcal{L} . Corollary If \mathcal{F} has universal balance and $\mathcal{L} \subset \mathcal{F}$ and $F \in \mathcal{F} \setminus \mathcal{L}$ then $X_F^{\perp} Q_{\mathcal{L}} X_F$ is a sum of matrices of the form	 N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF} is completely symmetric, or its generalization. k = n − 1: remove a common transversal from a set of mutually orthogonal n × n Latin squares, so that every N is J − I. (Done by many people.) 							
	$N_{FL_1}N_{L_1L_2}\cdots N_{L_rF} \tag{1}$	▶ $n \equiv 3 \pmod{4}$ and $k = (n+1)/2$ or $k = (n-1)/2$: if there is a doubly-regular tournament of size n , its adjacency matrix A satisfies							
	having repeated entries.	$I + A + A^{\top} = J$ and $A^2 \in \langle I, A, J \rangle$, then ensure that each <i>N</i> is either $I + A$ or $I + A^{\top}$							
	So, if we can ensure that, whenever <i>M</i> is a product like (1) then	(or A or A^{\top}).							
	$M + M^{\perp}$ is completely symmetric, then we have universal	(Done by many people, usually without using the words							
	balance.	doubly regular tournament.)							
Bailey	BCC2017 Relations among partitions 33	37/44 Bailey BCC2017 Relations among partitions 38/44							

Known families, for n parts of size k , continued	Problem: is this all?								
$N_{FG}N_{GH}N_{HF} + N_{FH}N_{HG}N_{GF}$ is completely symmetric, or its generalization. • $n = 2^{2m}$ and $k = 2^{2m-1} + 2^{m-1}$ or $k = 2^{2m-1} - 2^{m-1}$: Cameron and Seidel (1973) have constructions from quadratic forms, and the strong form of the condition is satisfied. (For $n = 16$ and $k = 6$ this involves compatible Clebsch graphs which form an amorphic association scheme.)	 Your task Find all possible sets of three or more incidence matrices N_{FG} satisfying the conditions. For each such set, realise them as incidence matrices of a set of partitions with <i>n</i> parts of size <i>k</i>. For each such realisation, find another partition with <i>k</i> parts of size <i>n</i> that is orthogonal to all the rest (surprisingly, this often makes the previous part easier). What about two such sets, one with <i>n</i> parts of size <i>k</i>, the other with <i>k</i> parts of size <i>n</i>, and every partition in one set orthogonal to every partitions, this is a double Youden rectangle, so I only require one of the sets to have at least three partitions.) Or three or more? 								
Bailey BCC2017 Relations among partitions	39/44Bailey BCC2017 Relations among partitions 40/4								

L	ooking back at the Abervst	wyth BCC in 1973																	
	3	,		A	B	С	D	Ε	F	G	H	Ι	J	K	L	M	N	0	Р
				A	B	С	D	E	F	G	H	Ι	J	K	L	M	N	0	Р
				A	B	С	D	Ε	F	G	H	Ι	J	K	L	M	N	0	Р
				H	G	F	Ε	D	С	В	A	P	0	Ν	Μ	L	K	J	Ι
				G	H	Ε	F	C	D	A	B	0	Р	M	N	K	L	Ī	J
				B	A	D	С	F	E	Η	G	J	Ι	L	K	N	M	Ρ	0
				K	L	Ι	J	0	P	М	N	С	D	A	В	G	Η	Ε	F
	NYTER OF			J	I	L	Κ	N	M	P	0	В	Α	D	C	F	E	H	G
				D	C	В	Α	H	G	F	E	L	Κ	J	I	P	0	Ν	Μ
				M	N	0	Р	Ι	J	Κ	L	Ε	F	G	Η	A	В	С	D
				I	J	K	L	M	N	0	P	A	В	C	D	E	F	G	Η
				E	F	G	Η	A	B	C	D	M	Ν	0	P	I	J	Κ	L
				0	P	Μ	Ν	Κ	L	Ι	J	G	Η	Ε	F	С	D	Α	В
				F	E	Η	G	B	A	D	C	Ν	Μ	P	0	J	I	L	Κ
	Ooh!—I know some	I want universal balance			K	J	Ι	P	0	N	M	D	С	B	A	H	G	F	Ε
	suitable incidence ma-	among some partitions		P	0	N	М	L	K	J	Ι	H	G	F	E	D	C	В	Α
	trices for those numbers	with 16 parts of size 6		C	D	Α	В	G	H	E	F	K	L	Ι	J	0	P	Μ	Ν
		*		N	M	Р	0	J	I	L	K	F	Ε	H	G	B	A	D	С
Bailey	BCC2017	Relations among partitions	41/44 Bailey	-			BCC2	017				Relat	ions arr	nong pa	rtitions				42/

Preceding slide, from Preece and Cameron (1975)	Multi-layered Youden rectangles									
Underlying set has size 96. 16 columns of size 6. 16 top letters of size 6. 16 middle letters of size 6. 16 bottom letters of size 6. Universal balance among the above, which are all strictly orthogonal to: 6 rows of size 16. Cameron says that he did not really understand this way of thinking about relations between partitions on a set until 25 years later, when he generalized this construction to arbitrary powers of 4 at the 2001 BCC in Sussex (Cameron, 2003).	 Each stage has <i>m</i> parts of size <i>n</i>. The set of stages has universal balance. Each layer has <i>n</i> parts of size <i>m</i>. The set of layers has universal balance. Every layer is strictly orthogonal to every stage. Preece and Morgan (2017) introduced this name, with the number of stages restricted to 2; they gave some constructions and proved some results. Your task Keep going! 									
Bailey BCC2017 Relations among partitions 42	Y44 BCC2017 Relations among partitions 44/44									