

A Latin square of order 6	A stained glass window in Caius College, Cambridge
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	photograph by J. P. Morgan

It does not appear in the

Why is it called 'Latin'?

SHFR

Experiments. Why this one?

book. It does not match any known experiment designed by Fisher.

This assumption is dubious for field trials in Australia.

in those two directions."

usually those of the rows and columns; consequently streaks of

fertility, weed infestation, etc., do, in fact, occur predominantly

(selected correspondence edited by J. H. Bennett)

R. A. Fisher,

letter to H. Jeffreys, 30 May 1938

An experiment on potatoes at Ely in 1932	A forestry experiment
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Experiment on a hillside near Beddgelert Forest, designed by Fisher and laid out in 1929 (The Forestry Commission

Other sorts of rows and columns: animals	Other sorts of rows and columns: plants in pots
An experiment on 16 sheep carried out by François Cretté de Palluel, reported in <i>Annals of Agriculture</i> in 1790. They were fattened on the given diet, and slaughtered on the date shown. <u>slaughter</u> Breed <u>date</u> <u>lle de France</u> <u>Beauce</u> <u>Champagne</u> <u>Picardy</u> <u>20 Feb</u> <u>potatoes</u> <u>turnips</u> <u>beets</u> <u>oats & peas</u> <u>20 Mar</u> <u>turnips</u> <u>beets</u> <u>oats & peas</u> <u>potatoes</u> <u>20 Apr</u> <u>beets</u> <u>oats & peas</u> <u>potatoes</u> <u>turnips</u> <u>20 May</u> <u>oats & peas</u> <u>potatoes</u> <u>turnips</u> <u>beets</u>	An experiment where treatments can be applied to individual leaves of plants in pots. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$ \frac{A}{C} B C \\ \frac{A}{$	Graeco-Latin squares	Pairs of orthogonal Latin squares
WE HAVE INSUSCENT A DATE OF OTHER SOLUTION OF THE SOLUTION OF	$\begin{array}{c c} A & B & C \\ \hline C & A & B \\ \hline B & C & A \end{array} \qquad \qquad$	Definition A pair of Latin squares of order <i>n</i> are orthogonal to each other if, when they are superposed, each letter of one occurs exactly once with each letter of the other. We have just seen a pair of orthogonal Latin squares of order 3

15/4

Definition A collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal.Theorem If n is a power of a prime number then there exist $n - 1$ mutually orthogonal Latin squares of order n.Example $(n = 4)$ For example, $n = 2, 3, 4, 5, 7, 8, 9, 11, 13,Mail Bb2 Cy3 Db4By4 Ab3 Da2 Cb1For example, n = 2, 3, 4, 5, 7, 8, 9, 11, 13,R. A. Fisher and F. Yates: Statistical Tables for Biological,to remain the provide the provided to the provided $	Mutually orthogonal Latin squares	When is the maximum achieved?				
$\frac{C\delta^2}{D\beta^3} \frac{D\gamma_1}{C\alpha 4} \frac{A\beta 4}{B\delta 1} \frac{B\alpha_3}{A\gamma 2}$ Theorem If there exist k mutually orthogonal Latin squares $L_1,, L_k$ of order n, then $k \le n-1$. Agricultural and Medical Research. Edinburgh, Oliver and Boyd, 1938. This book gives a set of $n-1$ MOLS for $n = 3, 4, 5, 7, 8$ and 9. The set of order 9 is not made by the usual finite-field construction, and it is not known how Fisher and Yates obtained this.	DefinitionA collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal.Example $(n = 4)$ $\frac{A\alpha 1}{B\beta 2} C\gamma 3 D\delta 4}{B\gamma 4 A\delta 3 D\alpha 2 C\beta 1}$ $C\delta 2 D\gamma 1 A\beta 4 B\alpha 3$ $D\beta 3 C\alpha 4 B\delta 1 A\gamma 2$ TheoremIf there exist k mutually orthogonal Latin squares L_1, \dots, L_k of order n, then $k \leq n - 1$.	Theorem If <i>n</i> is a power of a prime number then there exist $n - 1$ mutually orthogonal Latin squares of order <i>n</i> . For example, $n = 2, 3, 4, 5, 7, 8, 9, 11, 13,$ The standard construction uses a finite field of order <i>n</i> . R. A. Fisher and F. Yates: <i>Statistical Tables for Biological</i> , <i>Agricultural and Medical Research</i> . Edinburgh, Oliver and Boyd, 1938. This book gives a set of $n - 1$ MOLS for $n = 3, 4, 5, 7, 8$ and 9. The set of order 9 is not made by the usual finite-field construction, and it is not known how Fisher and Yates obtained this.				

An industrial experiment using MOLS	How to randomize? I
L. C. H. Tippett: Applications of statistical methods to the control of quality in industrial production. Manchester Statistical Society (1934). (Cited by Fisher, 1935) A cotton mill has 5 spindles, each made of 4 components. Why is one spindle producing defective weft? $\frac{Period i ii iiii iv v }{1 $	R. A. Fisher: The arrangement of field experiments. <i>Journal of</i> <i>the Ministry of Agriculture</i> , 33 (1926), 503–513. Systematic arrangements in a square have been used previously for variety trials in, for example, Ireland and Denmark; but the term "Latin square" should not be applied to any such systematic arrangements. The problem of the Latin Square, from which the name was borrowed, as formulated by Euler, consists in the enumeration of <i>every possible</i> arrangement, subject to the conditions that each row and each column shall contain one plot of each variety. Consequently, the term Latin Square should only be applied to a process of randomization by which one is selected at random out of the total number of Latin Squares possible,

How many different Latin squares of order n are there?	Reduced Latin squares, and equivalence
Are these two Latin squares the same? $ \frac{A \ B \ C}{C \ A \ B} = \frac{1 \ 2 \ 3}{3 \ 1 \ 2} = \frac{1 \ 2 \ 3}{2 \ 3 \ 1} $ To answer this question, we will have to insist that all the Latin squares use the same symbols, such as 1, 2,, <i>n</i> .	DefinitionA Latin square is reduced if the symbols in the first row and first column are 1, 2,, n in natural order.DefinitionLatin squares L and M are equivalent if there is a permutation f of the rows, a permutation g of the columns and permutation h of the symbols such that
21/44	22/44

Order 3	Order 4
There is only one reduced Latin square of order 3. $ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} $	There are two equivalence classes of Latin squares of order 4. 1 2 3 4 2 3 4 1 2 3 4 1 3 4 1 2 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 3 4 4 3 2 1 4 3 3 4 4 3 2 3 <td< td=""></td<>
23/44	24/44

	1	2	3	4	5				1	2	3	4	5			
	2	3	4	5	1				2	1	4	5	3			
	3	4	5	1	2				3	4	5	1	2			
	4	5	1	2	3				4	5	2	3	1			
	5	1	2	3	4				5	3	1	2	4			
cyclic						1	not	fro	m a	gr	oup)				
no 2 \times 2 Latin subsquare				ł	nas a	2 ×	2 I	ati	n si	ubs	qua	re				
6 reduced squares						5	0 re	duo	ced	sqı	ıare	es				

R. A. Fisher (1926): "... the Statistical Laboratory at Rothamsted is prepared to supply these "

R. A. Fisher and F. Yates: The 6 × 6 Latin squares. Proceedings of the Cambridge Philosophical Society, 30 (1934), 492-507.

R. A. Fisher and F. Yates: Statistical Tables for Biological, Agricultural and Medical Research. Edinburgh, Oliver and Boyd, 1938.

This includes every reduced Latin squares of orders 2, 3, 4 (and 5?), and one Latin square from each equivalence class of Latin squares of order 6.

Number	rs of red	luced Lati	n squares			How to randomize? II
order 2 3 4 5 6 7 8 9 10 11 6: Fra 7: Fra Saxe: 8: Wa 10: N	cyclic 1 1 3 6 60 120 1260 6720 90720 36288 blov, 1890 blov (wroo na, 1951 ells, 1967 IcKay and	non-cyclic group 0 1 0 80 0 1500 840 36288 0 ; Tarry, 1900 ng); Norton 9: Baun 1 Rogoyski,	$\begin{array}{c} \text{non-group} \\ 0 \\ 0 \\ 0 \\ 9268 \\ 16941960 \\ > 10^{12} \\ > 10^{15} \\ > 10^{25} \\ > 10^{34} \\ ; \text{Fisher and N} \\ , 1939 (incomplete on the second $	all 1 1 4 56 9408 16942080 $> 10^{12}$ $> 10^{15}$ $> 10^{34}$ (ates, 1934 plete); Sade, tein, 1975 cKay and Wa	equivalence classes 1 1 2 2 564 1676267 $> 10^{12}$ $> 10^{18}$ $> 10^{26}$ 1948; anless, 2005	 R. A. Fisher: <i>Statistical Methods for Research Workers</i>. Edinburgh, Oliver and Boyd, 1925. F. Yates: The formation of Latin squares for use in field experiments. <i>Empire Journal of Experimental Agriculture</i>, 1 (1933), 235–244. R. A. Fisher: <i>The Design of Experiments</i>. Edinburgh, Oliver and Boyd, 1935. These three all argued that randomization should ensure validity by eliminating bias in the estimation of the difference between the effect of any two treatments, and in the estimation of the variance of the foregoing estimator. This assumes that the data analysis allows for the effects of rows and columns.
10.14	ur				29/	44

Valid randomization	Some methods of valid randomization
 Random choice of a Latin square from a given set <i>L</i> of Latin squares or order <i>n</i> is valid if every cell in the square is equally likely to have each letter (this enures lack of bias in the estimation of the difference between treatment effects) every ordered pair of cells in different rows and columns has probability 1/n(n − 1) of having the same, given, letter, and probability (n − 2)/n(n − 1)² of having each ordered pair of distinct letters (this ensures lack of bias in the estimation of the variance). 	 Permute rows by a random permutation and permute columns by an independently chosen random permutation (a.k.a. randomize rows and columns)— now the standard method. Use any doubly transitive group in the above, rather than the whole symmetric group S_n (Grundy and Healy, 1950; Bailey, 1983). Choose a Latin square at random from a complete set of mutually orthogonal Latin squares, and then randomize letters (Preece, Bailey and Patterson, 1978, following a 1935 remark of Fisher's when discussing a paper of Neyman).
Gerechte designs	Incomplete blocks

Behrens introduced 'gerechte' designs in 1956. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	A block is a homogeneous group of experimental units. In an agricultural experiment, it might be a row of plots corresponding to a line of ploughing. In an industrial experiment, it might be a time period. If size of the blocks is less than the number of treatments, we have an incomplete-block design. How should we build incomplete-block designs?
33/44	34/5

Lattice designs for n^2 treatments in blocks of size n									Now	Now add four more treatments															
F. Ya larg (193 A de or 9	ates: A e nun 6), 42] esign block	A new aber o 4-455 Freatm 1 2 4 5 7 8 with 6 cs of signal	$\frac{1}{1} meth f vari}{1}$	nod of eties. La ks of s or 12	arrar Journ atin se \overline{A} \overline{B} \overline{C} \overline{A} \overline{B} \overline{C} size 3 block	nging al of A quare C B A (show s of si	variet <i>gricul</i> G vn as ze 3.	$\frac{\alpha \beta}{\gamma \alpha}$	ls inv Science squar $\frac{3}{\gamma} \frac{\gamma}{\gamma}$ $\frac{\alpha}{\alpha} \frac{\beta}{\beta}$ nns),	olvin <i>ce,</i> 26 re	g a	1 2 3 1 Th Ba va	4 5 6) 1 is de ance rianc) sigr d d e (K	7 8 9 10 n is a esig	1 7 11 also b ns an	2 5 8 11 palan re <mark>op</mark> ur, 19	3 9 11 aced. timal 58).	1 5 9 12	2 6 7 12	3 4 8 12	1 6 8 13	2 4 9 13	3 5 7 13 ng	10 11 12 13
1	4	7	1	2	3	1	2	3	1	2	3	So	are a	ll tł	nese	latti	ce de	esigne	s (Ch	eng a	nd B	ailey	1991).	
2	5	8	4	5	6	5	6	4	6	4	5	0	Ontimality was not really defined until the 1950s												
3	6	9	7	8	9	9	7	8	8	9	7	UI OI	uilla	шу	was	5 1101	reall	ly de	mea	unun	ule	19305	•		
The last design is balanced because every pair of treatments occur together in the same number of blocks.								Th Ya	The balanced designs are an affine plane and a projective plane. Yates did not know anything about such geometries in 1936.																

A hypothetical cheese-tasting experiment	Column-complete Latin squares					
TasterOrder1234561EBFACD2BCDEFA3AECBDF4FDECAB5DABFEC6CFADBEWhat happens if cheese E leaves a nasty after-taste?	DefinitionA Latin square is column-complete if each treatment is immediately followed, in the same column, by each other treatment exactly once.E. J. Williams: Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research, Series A, Physical Sciences, 2 (1949), 149–168. 0 12345 1 23450 5 01234 2 34501 4 50123 3 4 5 012					
Is this fair to cheese <i>B</i> ?	Williams gave a method of construction for all even orders.					
	His squares are still widely used in tasting experiments and in					
37/44	trials of new drugs to alleviate symptoms of chronic conditions. 38/44					

Complete Latin squares	Quasi-complete Latin squares
<text></text>	For some experiments on the ground, an East neighbour is as bad as a West neighbour, and a South neighbour is as bad as a North neighbour. Definition A Latin square is quasi-complete if each treatment has each other treatment next to it in the same row twice, and next to it in the same column twice, in either direction. $\frac{0 \ 1 \ 4 \ 2 \ 3}{1 \ 2 \ 0 \ 3 \ 4}}$ $\frac{1}{3 \ 4 \ 2 \ 0 \ 1}{4 \ 0 \ 3 \ 1 \ 2}}$ Freeman (1979) defined these. Freeman (1981) gave the results of a computer enumeration for small orders. Bailey (1984) gave a method of construction for all orders.
A randomization paradox	Back to pairs of orthogonal Latin squares
We can randomize a quasi-complete Latin square of order n by choosing a square at random from a set \mathcal{L} of quasi-complete Latin squares of order n with first row in natural order and then randomizing treatments. When $n = 7$, there is a set \mathcal{L}_1 of 864 such quasi-complete Latin	Question (Euler, 1782)For which values of n does there exist a pair of orthogonal Latin squares of order n?Theorem If n is odd, or if n is divisible by 4, then there is a pair of orthogonal Latin squares of order n.Proof.

squares that makes this randomization valid.

is not valid.

The set \mathcal{L}_2 of all known such quasi-complete Latin squares of order 7 contains 896 squares; random choice from this larger set

- (i) If *n* is odd, the Latin squares with entries in (i, j) defined by i + j and i + 2j modulo *n* are mutually orthogonal.
- (ii) If n = 4 or n = 8 such a pair of squares can be constructed from a finite field.
- (iii) If L_1 is orthogonal to L_2 , where L_1 and L_2 have order n, and M_1 is orthogonal to M_2 , where M_1 and M_2 have order m, then a product construction gives squares $L_1 \otimes M_1$ orthogonal to $L_2 \otimes M_2$, where these have order *nm*.

Euler's conjecture	The end of the conjecture						
 Conjecture If <i>n</i> is even but not divisible by 4, then there is no pair of orthogonal Latin squares of order <i>n</i>. This is true when <i>n</i> = 2, because the two letters on the main diagonal must be the same. Euler was unable to find a pair of orthogonal Latin squares of order 6. Theorem (Tarry, 1900) There is no pair of orthogonal Latin squares of order 6. Proof. Exhaustive enumeration by hand. 	Theorem (Bose and Shrikhande, 1959) There is a pair of orthogonal Latin squares of order 22. Theorem (Parker, 1959) If $n = (3q - 1)/2$ and $q - 3$ is divisible by 4 and q is a power of an odd prime, then there is a pair of orthogonal Latin squares of order n. In particular, there are pairs of orthogonal Latin squares of orders 10, 34, 46 and 70. Theorem (Bose, Shrikhande and Parker, 1960) If n is not equal to 2 or 6, then there exists a pair of orthogonal Latin squares of order n.						
43/44	44/44						