

Introduction of the design key

H. D. Patterson: The factorial combination of treatments in rotation experiments. *Journal of Agricultural Science*, **65** (1965), 171–182.

This paper introduced the design key.

The number of levels of each factor must be a power of a single prime number p. All examples have p = 2, but it is mentioned that the method can also be used with p = 3.

I had intended to include an example from this paper, but they are all far too complicated. I am amazed that any referee understood it at the time. Parts of it are almost as if Desmond is thinking aloud.

ample 1 (Graeco-	Latin square): the	key	Example 1 (Graeco-Latin square): construction				
Factors	7						
T 1 1 1	Factors	Factors with five levels	$W = R + C \qquad N = R + 2C$				
Experimental units	Rows	ĸ					
	Columns	С	С				
Treatments	Variety of wheat	W	$R \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid$				
	Quantity of nitrogen	Ν	0 0,0 1,2 2,4 3,1 4,3				
Every factor is repre	sented by a single lette	r					
Levels are integers n	odulo 5						
Levels are integers in	iodulo 5.		$\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{4}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$				
Constraints The trea	tment factors W and N	should both be	$\frac{3}{4} \frac{3}{4} \frac{3}$				
orthogonal to rows a	ind to columns.		4 4,4 0,1 1,5 2,0 5,2				
Design key The desi	ion key eynresses each	treatment factor as a	The experimental units are defined by all combinations of				
linear combination of	factors on the experiment	nontal units	levels of R and C				
	i lactors on the experin	nental units.	levels of K and C.				
W	= R + C $N = R + C$	2 <i>C</i>	The level of <i>W</i> is shown first in each cell.				
			The level of N is shown second in each cell.				
		5/33	N				

Example 1 (Graeco-Latin square): confounding					Treatment factors			
Ν	V = R + C	Ν	= R + 2C		There is a set \mathcal{F} of treatment factors. There is one potential treatment for each combination of levels of all the factors in \mathcal{F} .			
Stratum Rows Columns Rows-by-Columns	unit effect R C R + C R + 2C R + 3C R + 4C	df 4 4 4 4 4 4 4	$\frac{\text{tmt factor}}{W + 2N}$ $\frac{W + 4N}{W}$ $\frac{W}{N}$ $W + 3N$ $W + N$	tmt effect interaction interaction variety main nitrogen main interaction interaction	At first, we assume that every factor in \mathcal{F} has p levels, where p is prime. The levels are the integers modulo p . All addition is done modulo p . Each non-zero linear combination of factors in \mathcal{F} gives a treatment pseudofactor with p levels. This gives $p - 1$ degrees of freedom for contrasts between treatments, all belonging to the interaction of those genuine treatment factors whose coefficient is non-zero.			
W + N	$= 2R + 3C \equiv$	≡ 6R	+9C = R +	- 4C	If one such linear combination is a non-zero multiple of another, then they correspond to the same df; otherwise the corresponding sets of contrasts are orthogonal to each other.			

Factors on the experimental units	Poset block structure in Example 1
 There is a set G of unit factors. We assume that the real factors on the experimental units form a poset block structure. This means that they can be defined by a panel diagram, showing the list of factors G₁,, G_m in G for each G_i, its number n_i of levels; for each G_i, what it is nested in. There are n₁ × ··· × n_m experimental units, one for each combination of levels of G₁,, G_m. "G_i is nested in G_j" means 	 5 Rows 5 Columns This panel diagram tells us that there are factors <i>R</i> and <i>C</i>, each with 5 levels; there are 25 experimental units, one for each combination of levels of <i>R</i> and <i>C</i>; there is no nesting; the real factors on the experimental units are
"if two objects have the same level of G_i then this has no significance unless they have the same level of G_j ". The real factors are combinations of levels of none or more of	
G_1, \ldots, G_m subject to the rule that if G_i is included and G_i is nested in G_j then G_j must be included.	<i>RC</i> with 25 levels.

Poset block structure in Example 2	Powers of a prime				
4 Blocks 4 Plots in B					
This panel diagram tells us that	If a factor has p^r levels, where $r \ge 2$,				
there are factors B and P, each with 4 levels;	then it is represented by <i>r</i> pseudofactors, each with <i>p</i> levels.				
 there are 16 experimental units, one for each combination of levels of <i>B</i> and <i>P</i>; 	The convention is that these pseudofactors are written with the same single letter and subscripts $1, \ldots, r$.				
 <i>P</i> is nested in <i>B</i>, so there is no real factor involving <i>P</i> but not <i>B</i>; 					
the real factors on the experimental units are					
\oslash with 1 level;					
B with 4 levels;					
<i>BP</i> with 16 levels.					
11/3	12/3				

Identification of factorial effects	Example 2 (Factorial design in blocks): the key
 For a linear combination of factors (and pseudofactors) in <i>F</i> or a linear combination of factors (and pseudofactors) in <i>G</i>, we need to identify the factorial effect containing the corresponding <i>p</i> – 1 degrees of freedom. 1. Write down all the letters which occur, ignoring subscripts; 2. if factor <i>C</i> is nested in factor <i>D</i> and letter <i>C</i> occurs then include letter <i>D</i>; 3. remove any duplicate letters. The set of letters remaining gives the factorial effect. 	FactorsFactorsWith 2 levelsExperimental unitsBlocks (4) B_1, B_2 Plots in Blocks (4) P_1, P_2 Treatments S (2) S T (2)TU (2)UV (2)VThe pseudofactors for each factor all have the same letter.Levels are integers modulo 2.Constraints All treatment main effects should be orthogonal to blocks. So should as many two-factor interactions as possible.Design key $S = P_1$ $T = P_2$ $U = B_1 + P_1 + P_2$ $V = B_2 + P_1 + P_2$

Example 2 (Factorial design in blocks): construction	Example 2 (Factorial design in blocks): confounding				
	$S = P_1$ $T = P_2$ $U = B_1 + P_1 + P_2$ $V = B_2 + P_1 + P_2$				
$S = P_1$ $T = P_2$ $II = R_1 + P_1 + P_2$ $V = R_2 + P_1 + P_2$	Stratum unit effect df tmt factor tmt effect				
$b = r_1$ $r_1 = r_2$ $a = b_1 + r_1 + r_2$ $v = b_2 + r_1 + r_2$	Blocks (B) B_1 1 $S+T+U$ 3 f.i.				
The experimental units are defined by all combinations of	B_2 1 $S + T + V$ 3 f.i.				
levels of B_1 , B_2 , P_3 and P_2	$B_1 + B_2$ 1 $U + V$ U -by- V intr				
	Plots in Blocks (BP) P_1 1 S main S				
	P_2 1 T main T				
Block 1 Block 2 Block 3 Block 4	$P_1 + P_2$ 1 $S + T$ S-by-T intr				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$B_1 + P_1$ 1 $T + U$ T -by- U intr				
$B_2 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 1 \ \ 1 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ 1$	$B_1 + P_2$ 1 $S + U$ S -by- U intr				
$P_1 \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid 0 \mid 1 \mid 1 \mid 0 \mid 0$	$B_1 + P_1 + P_2 1 \qquad U \qquad \text{main } U$				
$P_2 \mid 0 \mid 1 \mid 0 \mid 1$	$B_2 + P_1$ 1 $T + V$ T -by- V intr				
S 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	$B_2 + P_2$ 1 $S + V$ S-by-V intr				
$T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$B_2 + P_1 + P_2 1 \qquad V \qquad \text{main } V$				
$egin{array}{c c c c c c c c c c c c c c c c c c c $	$B_1 + B_2 + P_1$ 1 $S + U + V$ 3 f.i.				
$V \parallel 0 \mid 1 \mid 1 \mid 0 \mid 1 \mid 0 \mid 0 \mid 1 \mid 0 \mid 0$	$B_1 + B_2 + P_2$ 1 $T + U + V$ 3 f.i.				
	$B_1 + B_2 + P_1 + P_2$ 1 $S + T + U + V$ 4 f.i.				
15/33	16/3				

What does the design key do?	Generalization to more than one prime
 A design key is a list giving an alias for each treatment (pseudo-)factor as a linear combination of (pseudo-)factors for the experimental units. This gives an algorithm for constructing the design; a design that is orthogonal; (if it is a fractional replicate) a fraction which is regular; an algorithm for identifying the confounding between treatment effects and strata defined by a poset block structure on the experimental units. 	Suppose that more than one prime is involved. If any factor has a composite number of levels, express it as a product of pseudofactors, each with a prime number of levels. For each prime p_i separately, consider only the treatment (pseudo-)factors and unit (pseudo-)factors which have p_i levels, and make a design key for them, using arithmetic modulo p_i . Suppose that p_1, \ldots, p_k are among the primes involved, and that, for $i = 1, \ldots, k$, T_i is a linear combination of treatment factors or pseudofactors with p_i levels. Then T_i belongs to an effect defined by a subset S_i of the initial letters of the genuine treatment factors. It can be shown that the $\prod_{i=1}^{k} (p_i - 1)$ df for the interaction between T_1, \ldots, T_k all belong to the effect defined by the subset $S_1 \cup \cdots \cup S_k$. The analogous result holds for factors on the experimental units.

Example 3	Example <u>3</u> (Whole-plot factors): skeleton anova					Two-phase experiments				
	units source Mean Rows Columns R#C Strips[R] Lines[C] Strips[R]#C R#Lines[C] S[R]#L[C]	df 1 3 3 4 8 12 8 32	treatments source Mean Grass type Residual Mowing height Residual Fertilizer quantity Residual G#M Residual G#F Residual M#F G#M#F Residual	df 1 2 2 2 2 2 2 2 2 2 6 2 6 4 4 24	va. i	Treatments Phase I units Phase II units The first design key allocates treatments to Phase I units. The second design key allocates Phase I units to Phase II units. Combining these allows us to keep track of confounding all the way through, which helps us to choose suitable design keys in the first place.				
					21/33	24/3				

Example 4 (Proteomics): constraints	Example 4 (Proteomics): confounding
2 Interventions 2 Interventions 2 Animals in C 2 Tissues + 2 Positions in A, C 2 Animals in C, + 2 Positions in A, C	2 Interventions 2 Tissues + 8 Cages 2 Animals in C + 2 Positions in A, C 8 Runs 8 Labels
 Interventions probably has the biggest variance from Phase I, so try to confound this with a low-variance term in Phase II. If possible, confound the rest of Cages with the same term, to avoid losing degrees of freedom for the residual. If possible, make Tissues and I#T orthogonal to Runs and Labels. 	$I = C_1 C_1, C_2, C_3 C_i = R_i + L_i R_1, R_2, R_3 A A = R_1 T T = P + C_3 P P = L_2 L_1, L_2, L_3 P + C_2 = R_2 Positions[A,C], Runs$
Design key $L = L = C_1 + C_2 + C_2 + C_2 + L_1 + R_2 + R_2 + R_3$	$T = P + C_3 = L_2 + R_3 + L_3$ T, P[A,C], R#L
$\begin{bmatrix} T & T = C_1 & C_1, & C_2, & C_3 & C_1 - R_1 + L_1 & R_1, & R_2, & R_3 \\ A & A = R_1 \\ T & T = P + C_3 & P & P = L_2 & L_1, & L_2, & L_3 \end{bmatrix}$	$I + T = C_1 + P + C_3 = R_1 + L_1 + L_2 + R_3 + L_3$ I#T, P[A,C], R#L

units		animal-bits	treatments			
source	df	source	df	source	df	EMS
Mean	1	Mean	1	Mean	1	$\xi_0 + 2\eta_0 + q_0$
Runs	7	Animals[C] ₁	1			$\xi_{\rm R} + 2\eta_{\rm CA}$
		Positions[A,C] ₁	2			$\xi_{\rm R} + 2\eta_{\rm CAP}$
		Residual	4			ξ̃r
Labels	7	Animals[C] ₂	1			$\xi_{\rm L} + 2\eta_{\rm CA}$
		Positions[A,C] ₂	2			$\xi_{\rm L} + 2\eta_{\rm CAP}$
		Residual	4			$\xi_{\rm L}$
R#L	49	Cages	7	Interventions	1	$\xi_{\rm RL} + 2\eta_{\rm C} + q({\rm I})$
				Residual	6	$\xi_{\rm RL} + 2\eta_{\rm C}$
		Animals[C] ₃	6			$\xi_{\rm RL} + 2\eta_{\rm CA}$
		Positions[A,C] ₃	12	Tissues	1	$\xi_{\rm RL} + 2\eta_{\rm CAP} + q({\rm T}$
				I#T	1	$\xi_{\rm RL} + 2\eta_{\rm CAP} + q(\Gamma)$
				Residual	10	$\xi_{\rm RL} + 2\eta_{\rm CAP}$
		Residual	24			ξ̃rl

Example 5 (Field then laboratory): constraints

$$V_1 = P_1$$
 C
 $V_2 = P_2$ P_1 , P_2 S_1 , S_2

Constraints All Variety effects should be orthogonal to Rows and orthogonal to Columns in Phase I.

Then at least 2df for Varieties must be confounded with R#C, so there is no loss of generality in taking this design key for the first phase.

Question What should we do in the second phase, given that at least 2df for Varieties must be confounded with Batches?

Example 5 (Fie	ld then labora	atory): option	1	Example 5 (Field then laboratory): option 2					
27 Varieties V ₁ , V ₂ , V ₃	$V_3 = R + C$ $V_1 = P_1$ $V_2 = P_2$	$\begin{array}{c} \text{vs} \\ \text{umms} \\ \text{ts in R, C} \end{array}$ $\begin{array}{c} R \\ C \\ P_1, P_2 \end{array} P_i$	9 Batches 9 Samples in B = B_1 B_1 , B_2 = B_2 = S_i S_1 , S_2	27 Varieties3 Rows 3 Columns 9 Plots in R, C9 Batches V_1, V_2, V_3 $V_3 = R + C$ R $R = B_1$ B_1, B_2 $V_1 = P_1$ C $P_1 = B_2$ $V_2 = P_2$ P_1, P_2 $C = S_1, P_2 = S_2$ S_1, S_2					
samples	plots	varieties		samples	plots	varieties			
source df	source df	source df	EMS	source d	lf source di	source df	EMS		
Batches 8	Rows2Columns2R#C4	V_3 2 Posidual 2	$ \begin{array}{c} \zeta_{B} + \eta_{R} \\ \zeta_{B} + \eta_{C} \\ \zeta_{B} + \eta_{RC} + q(V_{3}) \end{array} $	Batches		$\begin{array}{c c} V_1 & 2\\ \hline Residual & 4 \end{array}$	$\begin{aligned} \tilde{\xi}_{\rm B} &+ \eta_{\rm R} \\ \boldsymbol{\xi}_{\rm B} &+ \eta_{\rm RCP} + q(V_1) \\ \boldsymbol{\xi}_{\rm B} &+ \eta_{\rm RCP} \end{aligned}$		
		Kesiuuai 2	$\varsigma_{\rm B} \pm \eta_{\rm RC}$						

