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Abstract I

Paul Darius was a great advocate of the use of Hasse diagrams
as an aid to thinking about factors in a designed experiment.

These diagrams show relationships between factors. They give
a straightforward algorithm for calculating degrees of freedom,
with (almost) no need to remember formulae. When the fixed
and random factors are shown on the same diagram, it is fairly
straightforward to read off the skeleton analysis of variance
table, to spot confounding and to identify false replication.
I recommend doing all of these things at the design stage.

I will try to explain all of this for people who have not used
Hasse diagrams before.
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Abstract II

There is another use of Hasse diagrams in designed
experiments.

Usually the equation giving the expected value of the response
is a (very) concise way of saying that we are considering
several different models: for example, main effects only or full
factorial. The collection of models being considered can also be
shown on a Hasse diagram. When the data are available, this
diagram can be redrawn with its edges scaled to gve a clear
visual display of the information in the ANOVA table.

I will show this on some real examples.
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Example 1: small factorial

(From Paul Darius’s slides, slightly adapted.)

A field experiment is to be conducted using all combinations of
three varieties (of some cereal) and two methods of
fertilization. Each combination will replicated four times,
so that 24 plots of land (observational units) are needed.

Factor Number Levels
of levels

Variety (A) 3 A1, A2, A3
Method of Fertilization (B) 2 B1, B2
Observational unit 24 1, 2, 3, 4, 5, . . . , 24
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What is a factor?

(From Paul Darius’s slides, slightly adapted.)

A factor assigns a level to each observational unit.

The subsets corresponding to the levels of a factor
form together a partition of the set of observational units.
These subsets are called parts.

There are two trivial factors (or partitions).

Description PD notation RAB notation
Every observational unit is
in a different part

ε or E E

There is only one part µ or M U
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A partial order: “is finer than”

(From Paul Darius’s slides, slightly adapted.)

A partition A is finer than a partition B if A and B are different
and each pair of observational units that belong to the same
part of A also belong to the same part of B.

We can then say that partition B is coarser than partition A.

(I use the same words to describe the corresponding factors.)

Technically, the relation “is finer than” induces a partial order
in the set of partitions of the set of observational units. A Hasse
diagram is a general tool to represent partial orders graphically.

Our version of the Hasse diagram will display
the different partitions associated with the experiment from
“coarse” on top to “fine” at the bottom.
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Example 1: PD’s “Hasse diagram of factor structure”
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ε is finer than everything else.
Everything else is finer than µ.
Neither A nor B is finer than the other.
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Combining two factors: I

In general, if A and B are two factors
then we can make a new factor whose levels are
all combinations of a level of A with a level of B
(restricting to only those combinations that occur in the
experiment).

In Example 1, the new factor is Treatment, which has 6 levels:

(A1, B1) (A1, B2) (A2, B1) (A2, B2) (A3, B1) (A3, B2)

PD RAB
Notation A ∗ B or A× B or AB A∧ B
Name Interaction between A and B Infimum of A and B

I shall use my notation and name, and explain why later.
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Example 1: three Hasse diagrams
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( ) denotes random v denotes random
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From Hasse diagram to degrees of freedom to anova
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E

A B

A∧ B

U1, 1

3, 2 2, 1

6, 2

24, 18

Skeleton analysis of variance

Stratum Source df
U Mean 1
E A 2

B 1
A∧ B 2
residual 18

Show the number of levels of each factor.
Calculate degrees of freedom recursively by subtraction.
Each v gives a stratum (eigenspace of the covariance matrix).
Each f gives a source for a fixed effect, contained in the
stratum given by the highest v below or equal to it.vi shows a stratum with no residual.
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Example 1: Model

Denote the response on observational unit k by Yk.
If this observational unit has level i of A and level j of B,
then we assume that

Yk = µ + αi + βj + (αβ)ij + εk,

where the εk are independent normal random variables with
zero mean and the same variance, and all the other symbols
denote constants.

Is this equation “ the model”?
or is it a concise way of saying that we are considering several
different models?
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What is a model?

A model for the response vector Y usually specifies
E(Y) and Cov(Y) up to some unknown parameters.

The model is called linear if the possible values for E(Y) form a
vector subspace of the space of all possible response vectors.

For factor A, let VA be the set of vectors whose coordinates are
equal on all observational units with the same level of A.

E(Y) ∈ VA ⇐⇒ there are constants αi such that
E(Yk) = αi whenever A(k) = i.

dim(VA) = number of levels of A.
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Example 1: Model subspaces

E(Y) ∈ VA ⇐⇒ there are constants αi such that
E(Yk) = αi whenever A(k) = i.

E(Y) ∈ VB ⇐⇒ there are constants βj such that
E(Yk) = βj whenever B(k) = j.

E(Y) ∈ VU ⇐⇒ there is a constant µ such that
E(Yk) = µ for all k.

E(Y) ∈ VA + VB ⇐⇒ there are constants αi and βj such that
E(Yk) = αi + βj if A(k) = i and B(k) = j.

E(Y) ∈ VA∧B ⇐⇒ there are constants λij such that
E(Yk) = λij if A(k) = i and B(k) = j.
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Dimensions

For general factors A and B:

dim(VA + VB) = dim(VA) + dim(VB)− dim(VA ∩VB).

If all combinations of levels of A and B occur, then

VA ∩VB = VU,

which has dimension 1, so

dim(VA + VB) = dim(VA) + dim(VB)− 1.
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Another partial order; another Hasse diagram

The relation “is contained in” gives a partial order on
subspaces of a vector space.
So we can use a Hasse diagram to show the subspaces being
considered to model the expectation of Y.
Now it is helpful to show the dimension of each subspace on
the diagram.
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Example 1: Hasse diagram for model subspaces

VU1

VA3 VB2

VA + VB4

VA∧B6

�
�
�

@
@

@

�
�
�

@
@

@

null model

only factor B makes any difference

additive model

full model

For complicated families of models, non-mathematicians may
find the Hasse diagram easier to understand than the
equations.
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Example 1: main effects and interaction
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The vector of fitted values in VU has the
grand mean in every coordinate.

The main effect of factor B is the difference
between the vector of fitted values in VB and
the vector of fitted values in VU.

The interaction between factors A and B is
the difference between the vector of fitted
values in VA∧B and the vector of fitted values
in VA + VB.
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Labelling in the anova table

In the analysis-of–variance table,
the row labelled by factor B gives the calculations for testing
the hypothesis that the main effect of B is zero.

The row labelled by factor A∧ B gives the calculations for
testing the hypothesis that the interaction between A and B is
zero.

If the interaction between A and B is zero (up to random noise),
we accept the hypothesis that E(Y) belongs to the additive
model, and then see if we can further simplify. For example, is
the main effect of B zero?

Can you say that a factor is zero?

18/42



Variant of Example 1: blocks

The field is divided into 4 blocks of 6 observational units each,
to take account of known or suspected differences in the soil.

To be able extrapolate our results to other plots in other fields,
we need to assume that there is no interaction between the
factor Block and the factor Treatment
(where Treatment = A∧ B).

So we do not include factors Block∧ Treatment or Block∧A or
Block∧ B.
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From Hasse diagram to degrees of freedom to anova
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1, 1

3, 2 2, 1

6, 2

24, 15

4, 3

Skeleton analysis of variance

Stratum Source df
U Mean 1
Block 3
E A 2

B 1
A∧ B 2
residual 15
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Combining two factors: II

If A and B are factors then their infimum A∧ B satisfies:
I A∧ B is finer than A, and A∧ B is finer than B;
I if any other factor is finer than A and finer than B

then it is finer than A∧ B.

The supremum A∨ B of factors A and B is defined to satisfy:
I A is finer than A∨ B, and B is finer than A∨ B;
I if there is any other factor C

with A finer than C and B finer than C,
then A∨ B is finer than C.

Each part of factor A∨ B is a union of parts of A and is also a
union of parts of B, and is as small as possible subject to this.

I claim that the supremum is even more important than the
infimum in designed experiments and data analysis.

VA ∩VB = VA∨B
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Example 2: Latin squares with complications

(From Paul Darius’s slides, slightly adapted.)

An experiment will be conducted to compare the effects of
4 types of petrol on CO emissions when used in cars in realistic
driving circumstances. A driver will drive along a certain route
with a certain car, while the emission is measured. We know
that there are car-to-car differences, and we suspect that there
are route-to-route differences.

There are 12 cars and 12 routes. We do not intend to use all
combinations of these; instead we shall use 3 Latin squares,
each with 4 routes and 4 cars.
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Example 2: rows are cars; columns are routes

A B C D
B A D C
C D A B
D C B A

B C D A
C D A B
D A B C
A B C D

C B D A
B D A C
D A C B
A C B D

Car∨ Route = Square

Petrol∨Car = Petrol∨ Route = U
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Example 2: Hasse diagram for factor structure
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Example 2: silly data (rows are cars, columns are routes)

6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

Statistician 1: There
are differences between
cars. Fit Car and sub-
tract, then there are
no differences between
routes.

Statistician 2: There
are differences between
routes. Fit Route and
subtract, then there are
no differences between
cars.

Statistician 3: There are differences between squares: after
fitting Square there are no further differences between cars or
between routes. We cannot tell whether the differences
between squares are caused by cars or routes, because they are
confounded.
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Example 3: Split plots

(From Paul Darius’s slides, slightly adapted.)

A field trial is planned to study the effect of
2 irrigation methods (factor I) and 2 fertilizers (factor F).

To irrigate a plot with a sprinkler without water spilling into
the next plot, we need large plots, and there is room for only 8.

Fertilizer can be applied to much smaller areas, so we can
divide each plot into two subplots, one for each level of F.

I1, F1 I2, F2 I2, F2 I2, F1 I1, F1 I2, F2 I1, F1 I1, F2
I1, F2 I2, F1 I2, F1 I2, F2 I1, F2 I2, F1 I1, F2 I1, F1
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Example 2: Hasse diagram and skeleton anova
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1, 1
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8, 6

16, 6

4, 1

Skeleton analysis of variance

Stratum Source df
U Mean 1
Plots I 1

residual 6
E F 1

I ∧ F 1
residual 6

Treatment = I ∧ F

Plot∨ Treatment = I
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Putting in the supremum explicitly: I

Sometimes the person who analyses the data is not the person
who designed the experiment, and insufficient records have
been kept about the design.

Suppose that you are given data
for an experiment on 4 treatments,
which are applied to halves of eight plots as follows.

1 4 4 3 1 4 1 2
2 3 3 4 2 3 2 1

This is just Example 3 in disguise!
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Putting in the supremum explicitly: II

1 4 4 3 1 4 1 2
2 3 3 4 2 3 2 1

Introduce the factor G, where G = Treatment∨ Plot.

G partitions the treatments into two parts: {1, 2} and {3, 4}.
(You don’t know this,
but G is just the Irrigation factor that we had before.)
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Putting in the supremum explicitly: III
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Skeleton analysis of variance

Stratum Source df
U Mean 1
Plots G 1

residual 6
E Treatments 2

residual 6
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RAB’s guidelines for including infima and suprema

Suppose that we include factors F and G. When should we also
include F∧G and/or F∨G?

I Always include F∨G.
If either F or G is fixed then so is F∨G.

I If F and G are both random, then usually include F∧G.
(Otherwise, the covariance model cannot be justified by
randomization.)

I If F is inherent and local (such as rows in a field)
and G is a treatment factor with fixed effects,
then assume that we can omit F∧G.
(Otherwise, we cannot generalize our results.
We may need to transform the responses so that the
additive assumption is reasonable.)
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Grand general theory

If each pair of factors is orthogonal,
and all suprema are included, then the following hold.

I We get orthogonal anova;
in particular, changing the order of fitting makes no
difference.

I The previous algorithm for calculating degrees of freedom
is correct.

I The same algorithm can also be used to calculate sums of
squares recursively.

I The previous rule for allocating fixed effects to strata is
correct.
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Example 4: false replication

In 2012 the UK’s Food and Environment Research Agency
conducted an experiment to find out “the effects of
neonicotinoid seed treatments on bumble bee colonies under
field conditions” (from a DEFRA report available on the web,
Crown copyright 2013).
fera.co.uk/ccss/documents/defraBumbleBeereportPS2371V4A.pdf

Site Treatment of oilseed rape seeds
Site A, near Lincoln no treatment

Site B, near York ModestoTM

Site C, near Scunthorpe ChinookTM

Twenty colonies of bumble bees were placed at each site.
Various outcomes were measured on each colony.
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Example 4: Hasse diagram and skeleton anova

v
vi
viU1, 1

Site ≡ Treatment3, 2

Colony ≡ E60, 57

Skeleton analysis of variance

Stratum Source df
U Mean 1
Sites Treatments 2
Colonies 57

There is no residual mean square in the stratum containing
Treatments.
Therefore, there is no way of giving confidence intervals for the
estimates of treatment differences, or of giving P values for
testing the hypothesis of no treatment difference.

The official report does claim to give confidence intervals
and P values.

The Hasse diagram can clearly show such false replication
before the experiment is carried out.
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Example 5: Two treatment factors

Four diets for feeding
newly-hatched chickens were
compared. The diets
consisted of all levels of
Protein (groundnuts or soya
bean) with two levels of
Fishmeal (added or not).
Each diet was fed to two
chickens, and they were
weighed at the end of six
weeks.

� VU1

�VProtein 2 � VFishmeal2

� VP + VF3

� VP∧F4
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Example 5: anova

Source SS df MS VR
Protein 4704.5 1 4704.50 35.57
Fishmeal 3120.5 1 3120.50 23.60
Protein∧ Fishmeal 128.0 1 128.00 0.97
residual 529.0 4 132.25

You know how to interpret the anova table:
do the scientists who did the experiment know how to?
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Scaling the Hasse diagram of model subspaces

Suppose that M1 and M2 are model subspaces,
with M1 < M2,
and an edge joining M1 to M2.

The mean square for
the extra fit in M2 compared to the fit in M1 is

SS(fitted values in M2) − SS(fitted values in M1)
dim(M2)− dim(M1)

.

Scale the Hasse diagram so that each edge has length
proportional to the relevant mean square,
and show the residual mean square to give a scale.
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Example 5: scaled Hasse diagram of model subspaces
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residual mean square

There is no evidence of any interaction, so we can simplify to
the additive model. Neither main effect is zero, so we cannot
simplify further.
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Example 6: an experiment about protecting metal

An experiment was conducted to compare two protective dyes
for metal, both with each other and with no dye. Ten braided
metal cords were broken into three pieces. The three pieces of
each cord were randomly allocated to the three treatments.
After the dyes had been applied, the cords were left to weather
for a fixed time, then their strengths were measured, and
recorded as a percentage of the nominal strength specification.

Factors: Dye, with three levels (no dye, dye A, Dye B);
Cords, with ten levels;
U, with one level; E, with 30 levels.
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Example 6: Hasse diagram of model subspaces

�

�

�

Vcords10

Vcords + Vdyes12

Vcords + VT11

We assume that there are differences between cords,
so all the models that we consider include Vcords.

There is another factor T (To-dye-or-not-to-dye).
It has one level on ‘no dye’ and another level on both real dyes.
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Example 6: Scaled Hasse diagram of model subspaces
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Vcords10

Vcords + Vdyes12

Vcords + VT11

residual mean square

There is no evidence of a difference between dye A and dye B;
but there is definitely a difference between no dye and real
dyes.
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Using scaled Hasse diagrams

I have found that non-mathematicians find
scaled Hasse diagrams easier to interpret than anova tables,
especially for complicated families of models.

These diagrams can be extended to deal
with non-orthogonal models,
and with situations with more than one residual mean square
(use different colours for the corresponding edges).
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