

Abstract II	Example 1: small factorial
There is another use of Hasse diagrams in designed experiments. Usually the equation giving the expected value of the response is a (very) concise way of saying that we are considering several different models: for example, main effects only or full factorial. The collection of models being considered can also be shown on a Hasse diagram. When the data are available, this diagram can be redrawn with its edges scaled to gve a clear visual display of the information in the ANOVA table. I will show this on some real examples.	(From Paul Darius's slides, slightly adapted.) A field experiment is to be conducted using all combinations of three varieties (of some cereal) and two methods of fertilization. Each combination will replicated four times, so that 24 plots of land (observational units) are needed. Factor Number Levels $\overline{Variety (A)}$ 3 A1, A2, A3 Method of Fertilization (B) 2 B1, B2 Observational unit 24 1, 2, 3, 4, 5,, 24

What is a factor?		A partial order: "is finer than"
(From Paul Darius's slides, sli A factor assigns a level to eac The subsets corresponding to form together a partition of th These subsets are called parts There are two trivial factors (a Description Every observational unit is in a different part There is only one part	n observational unit. the levels of a factor le set of observational units.	 (From Paul Darius's slides, slightly adapted.) A partition <i>A</i> is finer than a partition <i>B</i> if <i>A</i> and <i>B</i> are different and each pair of observational units that belong to the same part of <i>A</i> also belong to the same part of <i>B</i>. We can then say that partition <i>B</i> is coarser than partition <i>A</i>. (I use the same words to describe the corresponding factors.) Technically, the relation "is finer than" induces a partial order in the set of partitions of the set of observational units. A Hasse diagram is a general tool to represent partial orders graphically. Our version of the Hasse diagram will display the different partitions associated with the experiment from "coarse" on top to "fine" at the bottom.

Denote the response on observational unit k by Y_k . If this observational unit has level i of A and level j of B , then we assume that $Y_k = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_k,$ Where the ε_k are independent normal random variables with zero mean and the same variance, and all the other symbols denote constants. Is this equation " the model"? or is it a concise way of saying that we are considering several different models? A model for the response vector \mathbf{Y} usually specifies $E(\mathbf{Y})$ and $Cov(\mathbf{Y})$ up to some unknown parameters. The model is called linear if the possible values for $E(\mathbf{Y})$ form a vector subspace of the space of all possible response vectors. For factor A , let V_A be the set of vectors whose coordinates are equal on all observational units with the same level of A . $E(\mathbf{Y}) \in V_A \iff$ there are constants α_i such that $E(\mathbf{Y}_k) = \alpha_i$ whenever $A(k) = i$.	Example 1: Model	What is a model?
$\dim(V_A) = \text{number of levels of } A.$	If this observational unit has level <i>i</i> of <i>A</i> and level <i>j</i> of <i>B</i> , then we assume that $Y_k = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_k,$ where the ε_k are independent normal random variables with zero mean and the same variance, and all the other symbols denote constants. Is this equation " the model"? or is it a concise way of saying that we are considering several different models?	$E(\mathbf{Y})$ and $Cov(\mathbf{Y})$ up to some unknown parameters. The model is called linear if the possible values for $E(\mathbf{Y})$ form a vector subspace of the space of all possible response vectors. For factor <i>A</i> , let V_A be the set of vectors whose coordinates are equal on all observational units with the same level of <i>A</i> . $E(\mathbf{Y}) \in V_A \iff$ there are constants α_i such that

Example 1: Model sub	spaces	Dimensions
$E(\mathbf{Y}) \in V_A \Longleftrightarrow$	there are constants α_i such that $E(Y_k) = \alpha_i$ whenever $A(k) = i$.	For general factors <i>A</i> and <i>B</i> :
$E(\mathbf{Y}) \in V_B \iff$	there are constants β_j such that $E(Y_k) = \beta_j$ whenever $B(k) = j$.	$\dim(V_A + V_B) = \dim(V_A) + \dim(V_B) - \dim(V_A \cap V_B).$
$E(\mathbf{Y}) \in V_U \Longleftrightarrow $	there is a constant μ such that $E(Y_k) = \mu$ for all k .	If all combinations of levels of A and B occur, then $V_A \cap V_B = V_U$,
$E(\mathbf{Y}) \in V_A + V_B \iff$	there are constants α_i and β_j such that $E(Y_k) = \alpha_i + \beta_j$ if $A(k) = i$ and $B(k) = j$.	which has dimension 1, so $\dim(V_A + V_B) = \dim(V_A) + \dim(V_B) - 1.$
$E(\mathbf{Y}) \in V_{A \wedge B} \Longleftrightarrow$	there are constants λ_{ij} such that $E(Y_k) = \lambda_{ij}$ if $A(k) = i$ and $B(k) = j$.	
	13/42	14/42

Another partial order; another Hasse diagram	Example 1: Hasse diagram for model subspaces
The relation "is contained in" gives a partial order on subspaces of a vector space. So we can use a Hasse diagram to show the subspaces being considered to model the expectation of Y . Now it is helpful to show the dimension of each subspace on the diagram.	$\begin{array}{cccc} 6 & V_{A \land B} & \text{full model} \\ 4 & V_A + V_B & \text{additive model} \\ 3 & V_A & 2 & V_B & \text{only factor } B \text{ makes any difference} \\ 1 & V_U & \text{null model} \\ \end{array}$ For complicated families of models, non-mathematicians may find the Hasse diagram easier to understand than the equations.

Example 1: main effects	and interaction	Labelling in the anova table
$\begin{array}{c} 6 V_{A \land B} & \text{th} \\ 6 V_{A \land B} & \text{v}_{A} \\ & \text{in} \\ 4 V_{A} + V_{B} \\ 3 V_{A} & 2 V_{B} & \text{be} \\ 1 \text{th} \\ 1 $	The interaction between factors <i>A</i> and <i>B</i> is the difference between the vector of fitted alues in $V_{A \land B}$ and the vector of fitted values in $V_A + V_B$. The main effect of factor <i>B</i> is the difference etween the vector of fitted values in V_B and the vector of fitted values in V_U . The vector of fitted values in V_U has the grand mean in every coordinate.	In the analysis-of-variance table, the row labelled by factor <i>B</i> gives the calculations for testing the hypothesis that the main effect of <i>B</i> is zero. The row labelled by factor $A \land B$ gives the calculations for testing the hypothesis that the interaction between <i>A</i> and <i>B</i> is zero. If the interaction between <i>A</i> and <i>B</i> is zero (up to random noise), we accept the hypothesis that $E(\mathbf{Y})$ belongs to the additive model, and then see if we can further simplify. For example, is the main effect of <i>B</i> zero? Can you say that a factor is zero?

Combining two factors: II	Example 2: Latin squares with complications
 If A and B are factors then their infimum A ∧ B satisfies: A ∧ B is finer than A, and A ∧ B is finer than B; if any other factor is finer than A and finer than B then it is finer than A ∧ B. The supremum A ∨ B of factors A and B is defined to satisfy: A is finer than A ∨ B, and B is finer than A ∨ B; if there is any other factor C with A finer than C, then A ∨ B is finer than C. Each part of factor A ∨ B is a union of parts of A and is also a union of parts of B, and is as small as possible subject to this. I claim that the supremum is even more important than the infimum in designed experiments and data analysis. 	(From Paul Darius's slides, slightly adapted.) An experiment will be conducted to compare the effects of 4 types of petrol on CO emissions when used in cars in realistic driving circumstances. A driver will drive along a certain route with a certain car, while the emission is measured. We know that there are car-to-car differences, and we suspect that there are route-to-route differences. There are 12 cars and 12 routes. We do not intend to use all combinations of these; instead we shall use 3 Latin squares, each with 4 routes and 4 cars.

Variant of Example 1: blocks

From Hasse diagram to degrees of freedom to anova

RAB's guidelines for including infima and suprema	Grand general theory
 Suppose that we include factors <i>F</i> and <i>G</i>. When should we also include <i>F</i> ∧ <i>G</i> and/or <i>F</i> ∨ <i>G</i>? Always include <i>F</i> ∨ <i>G</i>. If either <i>F</i> or <i>G</i> is fixed then so is <i>F</i> ∨ <i>G</i>. If <i>F</i> and <i>G</i> are both random, then usually include <i>F</i> ∧ <i>G</i>. (Otherwise, the covariance model cannot be justified by randomization.) If <i>F</i> is inherent and local (such as rows in a field) and <i>G</i> is a treatment factor with fixed effects, then assume that we can omit <i>F</i> ∧ <i>G</i>. (Otherwise, we cannot generalize our results. We may need to transform the responses so that the additive assumption is reasonable.) 	 If each pair of factors is orthogonal, and all suprema are included, then the following hold. We get orthogonal anova; in particular, changing the order of fitting makes no difference. The previous algorithm for calculating degrees of freedom is correct. The same algorithm can also be used to calculate sums of squares recursively. The previous rule for allocating fixed effects to strata is correct.
31/4	32/42

Example 4: false replication	Example 4: Hasse diagram and skeleton anova
In 2012 the UK's Food and Environment Research Agency conducted an experiment to find out "the effects of neonicotinoid seed treatments on bumble bee colonies under field conditions" (from a DEFRA report available on the web, Crown copyright 2013).	1, 1 • USkeleton analysis of variance3, 2 • Site = Treatment $\frac{\text{Stratum Source } df}{U - Mean - 1}$ 60, 57 • Colony = E $\frac{\text{Stratum Source } ff}{\text{Strates Strates } 57}$
fera.co.uk/ccss/documents/defraBumbleBeereportPS2371V4A.pdf Site Treatment of oilseed rape seeds Site A, near Lincoln no treatment Site B, near York Modesto TM Site C, near Scunthorpe Chinook TM	There is no residual mean square in the stratum containing Treatments. Therefore, there is no way of giving confidence intervals for the estimates of treatment differences, or of giving P values for testing the hypothesis of no treatment difference.
Twenty colonies of bumble bees were placed at each site. Various outcomes were measured on each colony.	The official report does claim to give confidence intervals and P values. The Hasse diagram can clearly show such false replication before the experiment is carried out.

Example 6: an experiment about protecting metal	Example 6: Hasse diagram of model subspaces
An experiment was conducted to compare two protective dyes for metal, both with each other and with no dye. Ten braided metal cords were broken into three pieces. The three pieces of each cord were randomly allocated to the three treatments. After the dyes had been applied, the cords were left to weather for a fixed time, then their strengths were measured, and recorded as a percentage of the nominal strength specification. Factors: Dye, with three levels (no dye, dye A, Dye B); Cords, with ten levels; <i>U</i> , with one level; <i>E</i> , with 30 levels.	$12 \bigvee V_{cords} + V_{dyes}$ $11 \bigvee V_{cords} + V_T$ $10 \bigotimes V_{cords}$ We assume that there are differences between cords, so all the models that we consider include V_{cords} . There is another factor <i>T</i> (To-dye-or-not-to-dye). It has one level on 'no dye' and another level on both real dyes.

40/42

Example 6: Scaled Hasse diagram of model subspaces	Using scaled Hasse diagrams
$12 = V_{cords} + V_{dyes}$ $11 = V_{cords} + V_T$ residual mean square $10 = V_{cords}$	I have found that non-mathematicians find scaled Hasse diagrams easier to interpret than anova tables, especially for complicated families of models. These diagrams can be extended to deal with non-orthogonal models, and with situations with more than one residual mean square (use different colours for the corresponding edges).
There is no evidence of a difference between dye A and dye B; but there is definitely a difference between no dye and real dyes.	42/42