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What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an n× n array of cells in which
n symbols are placed, one per cell, in such a way that each
symbol occurs once in each row and once in each column.

The symbols may be letters, numbers, colours, . . .

A Latin square of order 8
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Partitions

Definition
A partition of a set Ω is a set P of pairwise disjoint non-empty
subsets of Ω, called parts, whose union is Ω.

Definition
A partition P is uniform if all of its parts have the same size,
in the sense that, whenever Γ1 and Γ2 are parts of P, there is a
bijection from Γ1 onto Γ2.

Example

If Ω is the set of cells in a Latin square, then there are five
natural uniform partitions of Ω:

R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.
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The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q.

So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;

and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.

Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q is the partition
P∧Q each of whose parts is a non-empty intersection of
a part of P and a part of Q. So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q is the partition
P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.

Bailey Latin cubes Shanghai Jiao Tong University 4/23



Hasse diagrams

Given a collection P of partitions of a set Ω,
we can show them on a Hasse diagram.
I Draw a dot for each partition in P .
I If P ≺ Q then put Q higher than P in the diagram.
I If P ≺ Q but there is no S in P with P ≺ S ≺ Q then draw a

line from P to Q.

Here is the Hasse diagram for a Latin square.
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An alternative definition of Latin square

Definition
Let P and Q be uniform partitions of a set Ω. Then P and Q are
compatible if
I whenever ω1 and ω2 are points in the same part of P∨Q,

there are points α and β such that
I ω1 and α are in the same part of P,
I α and ω2 are in the same part of Q,
I ω1 and β are in the same part of Q,
I β and ω2 are in the same part of P.

I P∧Q is uniform.

Definition
A Latin square is a set {R, C, L} of pairwise compatible uniform
partitions of a set Ω which satisfy R∧ C = R∧ L = C∧ L = E
and R∨ C = R∨ L = C∨ L = U.

Comment
These definitions can be applied to finite or infinite sets.
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Another nice family of partitions

Definition
Suppose that P1, P2 and P3 are partitions of a set Ω, none of
which is U. Then {P1, P2, P3} is a Cartesian decomposition of Ω
of dimension 3 if |Γ1 ∩ Γ2 ∩ Γ3| = 1 whenever Γi is a part of Pi
for i = 1, 2, 3.

Taking infima gives a Cartesian lattice.

u

u

u u u

u u u
@
@
@
@
@
@

@
@
@
@
@
@�

�
�
�
�
�

�
�
�
�
�
�

�
��

�
��

�
��

�
��

HH
H
HH

H

HH
HH

HH

E

U

P1 P2 P3

P1 ∧ P2 P1 ∧ P3 P2 ∧ P3

I Each partition is uniform.
I Each pair are compatible.
I Statisticians call this a

completely crossed
orthogonal block
structure.
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Coset partitions

Definition
Let H be a subgroup of a group G. Then PH is the partition of G
into right cosets of H.

Proposition

Let H and K be subgroups of a group G. The following hold.
1. PH is uniform.
2. PH ∧ PK = PH∩K.
3. PH ∨ PK = P〈H,K〉.
4. PH and PK are compatible if and only if HK = KH.
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Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all
labelled by the elements of the same set T, then the Latin
square induces a quasigroup structure on T by the rule that
x ◦ y = z if z is the letter in the cell in row x and column y.

In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a
combinatorial condition?

A B C D E
E A B C D
B C D E A
D E A B C
C D E A B

A B C D E
B A D E C
D C E A B
C E A B D
E D B C A

Cayley table of Not a Cayley table
cyclic group C5 of a group
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The Quadrangle Criterion

Definition
A Latin square satisfies the quadrangle criterion if, whenever
there are 2× 2 subsquares

A B
C X

and
A B
C Y

then X = Y.

Theorem (Frolov (1890))

A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group
isomorphism.
So this combinatorial condition enables us to recognise a group:
the algebra drops out of the combinatorics.
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What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition
{P1, P2, P3} of a set Ω of dimension three, where Pi has n parts
for i ∈ {1, 2, 3}.
Alternatively, Ω = {(x, y, z) : x, y, z ∈ {1, 2, . . . , n}}.

Call the parts of P1, P2 and P3 layers, and the parts of P1 ∧ P2,
P1 ∧ P3 and P2 ∧ P3 lines. Two lines are parallel if they are parts
of the same partition.

There are three possibilities for allocating letters to make a
Latin cube, giving a partition L into letters.

(LC0) There are n letters, each of which occurs once per line.
(LC1) There are n letters, each of which occurs n times per layer.
(LC2) There are n2 letters, each of which occurs once per layer.
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What is a (finite) Latin cube?
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We concentrate on Latin cubes of sort (LC2)

There are n2 letters, each of which occurs once per layer.
This means that, for i ∈ {1, 2, 3},
L∧ Pi = E, L∨ Pi = U, and L is compatible with Pi: in other
words, {L, Pi} is a Cartesian decomposition of dimension two.

Definition
A Latin cube of sort (LC2) is regular if, whenever Γ1 and Γ2 are
parallel lines in the cube, the set of letters occurring in Γ1 is
either exactly the same as the set of letters occurring in Γ2 or
disjoint from it.
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A Latin cube of sort (LC2) with n = 3 which is not regular

Horizontal layers are shown side by side.

A E F
H I D
C G B

D B I
E C G
F A H

G H C
B F A
I D E

These two yz-lines have letter sets which are neither the same
nor disjoint.
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yz-lines in the middle layer cannot have any of these letters.
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yz-lines in the last layer cannot have any of these letters.
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One supremum

For {i, j, k} = {1, 2, 3}, put Lij = (Pi ∧ Pj) ∨ L.

A D G
I C F
E H B

B E H
G A D
F I C

C F I
H B E
D G A

Let’s make a part of L23. Start in one cell.
Include everything else in the same part of P2 ∧ P3.
Include everything else with the same letter as any of those.
Now the set of cells with red letters is a union of parts of
P2 ∧ P3 as well as a union of parts of L, so it is a part of L23.

That set of nine cells with red letters makes a Latin square,
with partitions into yz-lines, x-layers and letters.
The cube has many of these, and the full details
of the later proof (not shown) examine these in detail.
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Two Suprema

For {i, j, k} = {1, 2, 3}, put Lij = (Pi ∧ Pj) ∨ L.

A D G
I C F
E H B

B E H
G A D
F I C

C F I
H B E
D G A

The set of cells with red letters is a union of parts of P2 ∧ P3 as
well as a union of parts of L, so it is a part of L23.

Similarly, each part of L13 consists of one column in each
horizontal layer, with the same three letters in each column.

Theorem
If a Latin cube of sort (LC2) is regular then
{P3, L13, L23} is a
three-dimensional Cartesian decomposition of the cube. Moreover,
L13 ∧ L23 = L, P3 ∧ L23 = P2 ∧ P3 and P3 ∧ L13 = P1 ∧ P3.
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Hasse diagram for partitions discussed
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uU

Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.

Bailey Latin cubes Shanghai Jiao Tong University 17/23



Hasse diagram for partitions discussed

�
�
�
�
�
�

��
��
��

��
��

��
��

��
��

@
@
@

@
@
@

�
�
�
�
�
�

��
��

��
��

��
��

��
��

��

@
@
@

@
@
@

��
��

��
��

��
��

��
��

��

@
@

@
@
@
@

�
�
�
�
�
�

A
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

�
�
�
�
�
�
�
��

.

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

�
�
�
�
�
�

A
A
A
A
A
A

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

.

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

........

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

.......

uP1 ∧ P2 uP1 ∧ P3 uP2 ∧ P3 uL

u
E

uP1 uP2 uP3 uL12 uL13 uL23

uU
Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.

Bailey Latin cubes Shanghai Jiao Tong University 17/23



Hasse diagram for partitions discussed

�
�
�
�
�
�

��
��
��

��
��

��
��

��
��

@
@
@

@
@
@

�
�
�
�
�
�

��
��

��
��

��
��

��
��

��

@
@
@

@
@
@

��
��

��
��

��
��

��
��

��

@
@

@
@
@
@

�
�
�
�
�
�

A
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

�
�
�
�
�
�
�
��

.

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

�
�
�
�
�
�

A
A
A
A
A
A

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

.

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

........

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

.......

uP1 ∧ P2 uP1 ∧ P3 uP2 ∧ P3 uL

u
E

uP1 uP2 uP3 uL12 uL13 uL23

uU
Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.

Bailey Latin cubes Shanghai Jiao Tong University 17/23



Hasse diagram for partitions discussed

�
�
�
�
�
�

��
��
��

��
��

��
��

��
��

@
@
@

@
@
@

�
�
�
�
�
�

��
��

��
��

��
��

��
��

��

@
@
@

@
@
@

��
��

��
��

��
��

��
��

��

@
@

@
@
@
@

�
�
�
�
�
�

A
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

�
�
�
�
�
�
�
��

.

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

�
�
�
�
�
�

A
A
A
A
A
A

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

.

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

........

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

.......

uP1 ∧ P2 uP1 ∧ P3 uP2 ∧ P3 uL

u
E

uP1 uP2 uP3 uL12 uL13 uL23

uU
Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.

Bailey Latin cubes Shanghai Jiao Tong University 17/23



Hasse diagram for partitions discussed

�
�
�
�
�
�

��
��
��

��
��

��
��

��
��

@
@
@

@
@
@

�
�
�
�
�
�

��
��

��
��

��
��

��
��

��

@
@
@

@
@
@

��
��

��
��

��
��

��
��

��

@
@

@
@
@
@

�
�
�
�
�
�

A
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

�
�
�
�
�
�
�
��

.

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

�
�
�
�
�
�

A
A
A
A
A
A

�
�

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
QQ

.

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

........

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

..........................
..........................

.......

uP1 ∧ P2 uP1 ∧ P3 uP2 ∧ P3 uL

u
E

uP1 uP2 uP3 uL12 uL13 uL23

uU
Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.

Bailey Latin cubes Shanghai Jiao Tong University 17/23



So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians.

Put Ω = C3 × C3 × C3, where C3 is a cyclic group of order 3.
There are nine cells (x, y, z) with any given value of x−1y,
and nine cells with any given value of x−1z.
Fixing both values gives me three cells,
so I use the pairs of values to determine the nine letters.
(If we know x−1y and x−1z then we know y−1z,
so it does not matter which two of these ratios we use.)
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Can we generalize this to any group G? (Maybe infinite?)

Put Ω = G×G×G = {(x, y, z) : x, y, z ∈ G}.

Make each partition as the right coset partition PH for some
subgroup H of G×G×G.

partition subgroup
P1 H1 = {(1, y, z) : y, z ∈ G}

P1 ∧ P2 H12 = {(1, 1, z) : z ∈ G}
values of x−1y K12 = {(x, x, z) : x, z ∈ G}
values of x−1z K13 = {(x, y, x) : x, y ∈ G}

L δ(G) = {(x, x, x) : x ∈ G}

δ(G) is the diagonal subgroup of G×G×G.

L12 = (P1 ∧ P2) ∨ L is the coset partition of the subgroup
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If G is not abelian then these subgroups do not commute, so the
partitions are not compatible, so we do not include all infima.
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Hasse diagram for subgroups involved
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A theorem

Theorem
Suppose that Q = {Q1, Q2, Q3, Q4} is a set of four partitions of the
same set Ω. The following are equivalent.
1. There is a regular Latin cube of sort (LC2) such that

Q = {P1 ∧ P2, P1 ∧ P3, P2 ∧ P3, L}.

2. Every subset of three of the partitions in Q form the minimal
non-trivial partitions in a Cartesian lattice of dimension three.

3. There is a group G, unique up to group isomorphism, such that
Ω may be identified with G×G×G and the partitions in Q are
the right-coset partitions of the subgroups {(g, 1, 1) : g ∈ G},
{(1, g, 1) : g ∈ G}, {(1, 1, g) : g ∈ G} and {(g, g, g) : g ∈ G}.

So, either of these two combinatorial conditions leads us to a
group.
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Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by

induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.

(a) If m = 2 then there is a Latin square on Ω, unique up to
paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.

3. The preceding theorem gives the base case for a proof by
induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.

(a) If m = 2 then there is a Latin square on Ω, unique up to
paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by

induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.

(a) If m = 2 then there is a Latin square on Ω, unique up to
paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by

induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.

(a) If m = 2 then there is a Latin square on Ω, unique up to
paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by

induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If m = 2 then there is a Latin square on Ω, unique up to

paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



Comments

1. When G is a finite simple group, the diagonal group δ(G)
plays a role in the O’Nan–Scott Theorem.

2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by

induction of the following theorem.

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If m = 2 then there is a Latin square on Ω, unique up to

paratopism, such that Q = {R, C, L}.
(b) If m > 2 then there is a group G, unique up to group

isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

Bailey Latin cubes Shanghai Jiao Tong University 22/23



References
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I M. Frolov: Recherches sur les permutations carrées.
J. Math. Spéc. (3) 4 (1890), 8–11.

I D. A. Preece, S. C. Pearce and J. R. Kerr: Orthogonal
designs for three-dimensional experiments. Biometrika 60
(1973), 349–358.

I R. A. Bailey: Association Schemes: Designed Experiments,
Algebra and Combinatorics, Cambridge University Press,
Cambridge, 2004.

I C. E. Praeger and C. Schneider: Permutation Groups and
Cartesian Decompositions, Cambridge University Press,
Cambridge, 2018.

I R. A. Bailey, P. J. Cameron, C. E. Praeger and C. Schneider:
The geometry of diagonal groups. arXiv 2007.10726.

Bailey Latin cubes Shanghai Jiao Tong University 23/23



References
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