Latin cubes

R. A. Bailey

University of St Andrews

QMUL (emerita)

Shanghai Jiao Tong University, 2 December 2020

Joint work with Peter Cameron (University of St Andrews), Cheryl Praeger (University of Western Australia) and Csaba Schneider (Universidade Federal de Minas Gerais)

What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

What is a Latin square?

Definition

Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

A Latin square of order 8

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.

Definition

A partition P is uniform if all of its parts have the same size, in the sense that, whenever Γ_{1} and Γ_{2} are parts of P, there is a bijection from Γ_{1} onto Γ_{2}.

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.
Definition
A partition P is uniform if all of its parts have the same size, in the sense that, whenever Γ_{1} and Γ_{2} are parts of P, there is a bijection from Γ_{1} onto Γ_{2}.
Example
If Ω is the set of cells in a Latin square, then there are five natural uniform partitions of Ω :
R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q. So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$;

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

Definition
The supremum, or join, of partitions P and Q is the partition
$P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$
and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

Definition
The supremum, or join, of partitions P and Q is the partition
$P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$ and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.
Draw a graph by putting an edge between two points if they are in the same part of P or the same part of Q. Then the parts of $P \vee Q$ are the connected components of the graph.

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω, we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P}.
- If $P \prec Q$ then put Q higher than P in the diagram.
- If $P \prec Q$ but there is no S in \mathcal{P} with $P \prec S \prec Q$ then draw a line from P to Q.

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω, we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P}.
- If $P \prec Q$ then put Q higher than P in the diagram.
- If $P \prec Q$ but there is no S in \mathcal{P} with $P \prec S \prec Q$ then draw a line from P to Q.

Here is the Hasse diagram for a Latin square.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise compatible uniform partitions of a set Ω which satisfy $R \wedge C=R \wedge L=C \wedge L=E$ and $R \vee C=R \vee L=C \vee L=U$.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise compatible uniform partitions of a set Ω which satisfy $R \wedge C=R \wedge L=C \wedge L=E$ and $R \vee C=R \vee L=C \vee L=U$.
Comment
These definitions can be applied to finite or infinite sets.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.
- Each pair are compatible.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.
- Each pair are compatible.
- Statisticians call this a completely crossed orthogonal block structure.

Coset partitions

Definition

Let H be a subgroup of a group G. Then P_{H} is the partition of G into right cosets of H.

Coset partitions

Definition

Let H be a subgroup of a group G. Then P_{H} is the partition of G into right cosets of H.

Proposition

Let H and K be subgroups of a group G. The following hold.

1. P_{H} is uniform.
2. $P_{H} \wedge P_{K}=P_{H \cap K}$.
3. $P_{H} \vee P_{K}=P_{\langle H, K\rangle}$.
4. P_{H} and P_{K} are compatible if and only if $H K=K H$.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

A	B	C	D	E
E	A	B	C	D
B	C	D	E	A
D	E	A	B	C
C	D	E	A	B

A	B	C	D	E
B	A	D	E	C
D	C	E	A	B
C	E	A	B	D
E	D	B	C	A

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

A	B	C	D	E
E	A	B	C	D
B	C	D	E	A
D	E	A	B	C
C	D	E	A	B

Cayley table of cyclic group C_{5}

A	B	C	D	E
B	A	D	E	C
D	C	E	A	B
C	E	A	B	D
E	D	B	C	A

Not a Cayley table of a group

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	and \quad	A	B
:---:	:---:			
C	Y			

then $X=Y$.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---:	:---:			
C	Y			

then $X=Y$.
Theorem (Frolov (1890))
A Latin square is the Cayley table of a group (possibly after suitable relabelling of the rows and columns) if and only if it satisfies the quadrangle criterion.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	and \quad	A	B
:---:	:---:			
C	Y			

then $X=Y$.
Theorem (Frolov (1890))
A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group isomorphism.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	and \quad	A	B
:---:	:---:			
C	Y			

then $X=Y$.
Theorem (Frolov (1890))
A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group isomorphism.
So this combinatorial condition enables us to recognise a group: the algebra drops out of the combinatorics.

What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition $\left\{P_{1}, P_{2}, P_{3}\right\}$ of a set Ω of dimension three, where P_{i} has n parts for $i \in\{1,2,3\}$.
Alternatively, $\Omega=\{(x, y, z): x, y, z \in\{1,2, \ldots, n\}\}$.

What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition $\left\{P_{1}, P_{2}, P_{3}\right\}$ of a set Ω of dimension three, where P_{i} has n parts for $i \in\{1,2,3\}$.
Alternatively, $\Omega=\{(x, y, z): x, y, z \in\{1,2, \ldots, n\}\}$.
Call the parts of P_{1}, P_{2} and P_{3} layers, and the parts of $P_{1} \wedge P_{2}$, $P_{1} \wedge P_{3}$ and $P_{2} \wedge P_{3}$ lines. Two lines are parallel if they are parts of the same partition.

What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition $\left\{P_{1}, P_{2}, P_{3}\right\}$ of a set Ω of dimension three, where P_{i} has n parts for $i \in\{1,2,3\}$.
Alternatively, $\Omega=\{(x, y, z): x, y, z \in\{1,2, \ldots, n\}\}$.
Call the parts of P_{1}, P_{2} and P_{3} layers, and the parts of $P_{1} \wedge P_{2}$, $P_{1} \wedge P_{3}$ and $P_{2} \wedge P_{3}$ lines. Two lines are parallel if they are parts of the same partition.
There are three possibilities for allocating letters to make a Latin cube, giving a partition L into letters.
(LCO) There are n letters, each of which occurs once per line.

What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition $\left\{P_{1}, P_{2}, P_{3}\right\}$ of a set Ω of dimension three, where P_{i} has n parts for $i \in\{1,2,3\}$.
Alternatively, $\Omega=\{(x, y, z): x, y, z \in\{1,2, \ldots, n\}\}$.
Call the parts of P_{1}, P_{2} and P_{3} layers, and the parts of $P_{1} \wedge P_{2}$, $P_{1} \wedge P_{3}$ and $P_{2} \wedge P_{3}$ lines. Two lines are parallel if they are parts of the same partition.
There are three possibilities for allocating letters to make a Latin cube, giving a partition L into letters.
(LCO) There are n letters, each of which occurs once per line.
(LC1) There are n letters, each of which occurs n times per layer.

What is a (finite) Latin cube?

The structure of a cube is a Cartesian decomposition $\left\{P_{1}, P_{2}, P_{3}\right\}$ of a set Ω of dimension three, where P_{i} has n parts for $i \in\{1,2,3\}$.
Alternatively, $\Omega=\{(x, y, z): x, y, z \in\{1,2, \ldots, n\}\}$.
Call the parts of P_{1}, P_{2} and P_{3} layers, and the parts of $P_{1} \wedge P_{2}$, $P_{1} \wedge P_{3}$ and $P_{2} \wedge P_{3}$ lines. Two lines are parallel if they are parts of the same partition.
There are three possibilities for allocating letters to make a Latin cube, giving a partition L into letters.
(LCO) There are n letters, each of which occurs once per line.
(LC1) There are n letters, each of which occurs n times per layer.
(LC2) There are n^{2} letters, each of which occurs once per layer.

We concentrate on Latin cubes of sort (LC2)

There are n^{2} letters, each of which occurs once per layer. This means that, for $i \in\{1,2,3\}$,
$L \wedge P_{i}=E, L \vee P_{i}=U$, and L is compatible with P_{i} : in other words, $\left\{L, P_{i}\right\}$ is a Cartesian decomposition of dimension two.

We concentrate on Latin cubes of sort (LC2)

There are n^{2} letters, each of which occurs once per layer.
This means that, for $i \in\{1,2,3\}$,
$L \wedge P_{i}=E, L \vee P_{i}=U$, and L is compatible with P_{i} : in other words, $\left\{L, P_{i}\right\}$ is a Cartesian decomposition of dimension two.

Definition
A Latin cube of sort (LC2) is regular if, whenever Γ_{1} and Γ_{2} are parallel lines in the cube, the set of letters occurring in Γ_{1} is either exactly the same as the set of letters occurring in Γ_{2} or disjoint from it.

A Latin cube of sort (LC2) with $n=3$ which is not regular

Horizontal layers are shown side by side.

A	E	F
H	I	D
C	G	B

D	B	I
E	C	G
F	A	H

G	H	C
B	F	A
I	D	E

A Latin cube of sort (LC2) with $n=3$ which is not regular

Horizontal layers are shown side by side.

A	E	F
H	I	D
C	G	B

D	B	I
E	C	G
F	A	H

G	H	C
B	F	A
I	D	E

These two $y z$-lines have letter sets which are neither the same nor disjoint.

A Latin cube of sort (LC2) with $n=3$ which is regular

Horizontal layers are shown side by side.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

A Latin cube of sort (LC2) with $n=3$ which is regular

Horizontal layers are shown side by side.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

These two $y z$-lines have identical letter sets;

A Latin cube of sort (LC2) with $n=3$ which is regular

Horizontal layers are shown side by side.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

These two $y z$-lines have identical letter sets; the other two $y z$-lines in the middle layer cannot have any of these letters.

A Latin cube of sort (LC2) with $n=3$ which is regular

Horizontal layers are shown side by side.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

These two $y z$-lines have identical letter sets; the other two $y z$-lines in the middle layer cannot have any of these letters.
These two $y z$-lines have identical letter sets;

A Latin cube of sort (LC2) with $n=3$ which is regular

Horizontal layers are shown side by side.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

These two $y z$-lines have identical letter sets; the other two $y z$-lines in the middle layer cannot have any of these letters.
These two $y z$-lines have identical letter sets; the other two $y z$-lines in the last layer cannot have any of these letters.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell. Include everything else in the same part of $P_{2} \wedge P_{3}$.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell.
Include everything else in the same part of $P_{2} \wedge P_{3}$.
Include everything else with the same letter as any of those.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell.
Include everything else in the same part of $P_{2} \wedge P_{3}$.
Include everything else with the same letter as any of those.
Now the set of cells with red letters is a union of parts of
$P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell.
Include everything else in the same part of $P_{2} \wedge P_{3}$.
Include everything else with the same letter as any of those.
Now the set of cells with red letters is a union of parts of $P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.
That set of nine cells with red letters makes a Latin square, with partitions into $y z$-lines, x-layers and letters.

One supremum

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

Let's make a part of L^{23}. Start in one cell.
Include everything else in the same part of $P_{2} \wedge P_{3}$.
Include everything else with the same letter as any of those.
Now the set of cells with red letters is a union of parts of
$P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.
That set of nine cells with red letters makes a Latin square, with partitions into $y z$-lines, x-layers and letters.
The cube has many of these, and the full details
of the later proof (not shown) examine these in detail.

Two Suprema

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

The set of cells with red letters is a union of parts of $P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.

Two Suprema

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

The set of cells with red letters is a union of parts of $P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.
Similarly, each part of L^{13} consists of one column in each horizontal layer, with the same three letters in each column.

Two Suprema

For $\{i, j, k\}=\{1,2,3\}$, put $L^{i j}=\left(P_{i} \wedge P_{j}\right) \vee L$.

A	D	G
I	C	F
E	H	B

B	E	H
G	A	D
F	I	C

C	F	I
H	B	E
D	G	A

The set of cells with red letters is a union of parts of $P_{2} \wedge P_{3}$ as well as a union of parts of L, so it is a part of L^{23}.
Similarly, each part of L^{13} consists of one column in each horizontal layer, with the same three letters in each column.
Theorem
If a Latin cube of sort (LC2) is regular then
$\left\{P_{3}, L^{13}, L^{23}\right\}$ is a
three-dimensional Cartesian decomposition of the cube. Moreover, $L^{13} \wedge L^{23}=L, P_{3} \wedge L^{23}=P_{2} \wedge P_{3}$ and $P_{3} \wedge L^{13}=P_{1} \wedge P_{3}$.

Hasse diagram for partitions discussed

Hasse diagram for partitions discussed

Each partition is uniform.

Hasse diagram for partitions discussed

Each partition is uniform.

Each pair are compatible.
U

Hasse diagram for partitions discussed

Each partition is uniform.
All suprema are included,
Each pair are compatible.
U

Hasse diagram for partitions discussed

Each partition is uniform.
All suprema are included,
Each pair are compatible. but not all infima.

So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians.

So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians. Put $\Omega=C_{3} \times C_{3} \times C_{3}$, where C_{3} is a cyclic group of order 3 .

So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians. Put $\Omega=C_{3} \times C_{3} \times C_{3}$, where C_{3} is a cyclic group of order 3 . There are nine cells (x, y, z) with any given value of $x^{-1} y$, and nine cells with any given value of $x^{-1} z$.

So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians.
Put $\Omega=C_{3} \times C_{3} \times C_{3}$, where C_{3} is a cyclic group of order 3 .
There are nine cells (x, y, z) with any given value of $x^{-1} y$, and nine cells with any given value of $x^{-1} z$.
Fixing both values gives me three cells, so I use the pairs of values to determine the nine letters.

So how did I make that regular Latin cube?

I used a method of construction that is familiar to statisticians.
Put $\Omega=C_{3} \times C_{3} \times C_{3}$, where C_{3} is a cyclic group of order 3 .
There are nine cells (x, y, z) with any given value of $x^{-1} y$, and nine cells with any given value of $x^{-1} z$.
Fixing both values gives me three cells, so I use the pairs of values to determine the nine letters.
(If we know $x^{-1} y$ and $x^{-1} z$ then we know $y^{-1} z$, so it does not matter which two of these ratios we use.)

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

| partition | subgroup |
| :---: | :---: | :---: |
| $P_{1} \quad H_{1}=\{(1, y, z): y, z \in G\}$ | |

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$
values of $x^{-1} y$	K_{12}	$=\{(x, x, z): x, z \in G\}$

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$
values of $x^{-1} y$	K_{12}	$=\{(x, x, z): x, z \in G\}$
values of $x^{-1} z$	K_{13}	$=\{(x, y, x): x, y \in G\}$

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$
values of $x^{-1} y$	K_{12}	$=\{(x, x, z): x, z \in G\}$
values of $x^{-1} z$	K_{13}	$=\{(x, y, x): x, y \in G\}$
L	$\delta(G)$	$=\{(x, x, x): x \in G\}$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$
values of $x^{-1} y$	K_{12}	$=\{(x, x, z): x, z \in G\}$
values of $x^{-1} z$	K_{13}	$=\{(x, y, x): x, y \in G\}$
L	$\delta(G)$	$=\{(x, x, x): x \in G\}$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.
$L^{12}=\left(P_{1} \wedge P_{2}\right) \vee L$ is the coset partition of the subgroup $\left\langle H_{12}, \delta(G)\right\rangle=\delta(G) H_{12}=H_{12} \delta(G)=K_{12}$.

Can we generalize this to any group G? (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Make each partition as the right coset partition P_{H} for some subgroup H of $G \times G \times G$.

partition	subgroup	
P_{1}	H_{1}	$=\{(1, y, z): y, z \in G\}$
$P_{1} \wedge P_{2}$	H_{12}	$=\{(1,1, z): z \in G\}$
values of $x^{-1} y$	K_{12}	$=\{(x, x, z): x, z \in G\}$
values of $x^{-1} z$	K_{13}	$=\{(x, y, x): x, y \in G\}$
L	$\delta(G)$	$=\{(x, x, x): x \in G\}$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.
$L^{12}=\left(P_{1} \wedge P_{2}\right) \vee L$ is the coset partition of the subgroup
$\left\langle H_{12}, \delta(G)\right\rangle=\delta(G) H_{12}=H_{12} \delta(G)=K_{12}$.
$K_{12} \cap H_{3}=\{(x, x, 1): x \in G\} ; \quad K_{23} \cap H_{1}=\{(1, y, y): y \in G\}$. If G is not abelian then these subgroups do not commute, so the partitions are not compatible, so we do not include all infima.

Hasse diagram for subgroups involved

A theorem

Theorem
Suppose that $\mathcal{Q}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ is a set of four partitions of the same set Ω. The following are equivalent.

1. There is a regular Latin cube of sort (LC2) such that

$$
\mathcal{Q}=\left\{P_{1} \wedge P_{2}, P_{1} \wedge P_{3}, P_{2} \wedge P_{3}, L\right\}
$$

A theorem

Theorem
Suppose that $\mathcal{Q}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ is a set of four partitions of the same set Ω. The following are equivalent.

1. There is a regular Latin cube of sort (LC2) such that

$$
\mathcal{Q}=\left\{P_{1} \wedge P_{2}, P_{1} \wedge P_{3}, P_{2} \wedge P_{3}, L\right\}
$$

2. Every subset of three of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension three.

A theorem

Theorem
Suppose that $\mathcal{Q}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ is a set of four partitions of the same set Ω. The following are equivalent.

1. There is a regular Latin cube of sort (LC2) such that

$$
\mathcal{Q}=\left\{P_{1} \wedge P_{2}, P_{1} \wedge P_{3}, P_{2} \wedge P_{3}, L\right\}
$$

2. Every subset of three of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension three.
3. There is a group G, unique up to group isomorphism, such that Ω may be identified with $G \times G \times G$ and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $\{(g, 1,1): g \in G\}$, $\{(1, g, 1): g \in G\},\{(1,1, g): g \in G\}$ and $\{(g, g, g): g \in G\}$.

A theorem

Theorem
Suppose that $\mathcal{Q}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ is a set of four partitions of the same set Ω. The following are equivalent.

1. There is a regular Latin cube of sort (LC2) such that

$$
\mathcal{Q}=\left\{P_{1} \wedge P_{2}, P_{1} \wedge P_{3}, P_{2} \wedge P_{3}, L\right\}
$$

2. Every subset of three of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension three.
3. There is a group G, unique up to group isomorphism, such that Ω may be identified with $G \times G \times G$ and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $\{(g, 1,1): g \in G\}$, $\{(1, g, 1): g \in G\},\{(1,1, g): g \in G\}$ and $\{(g, g, g): g \in G\}$.

A theorem

Theorem

Suppose that $\mathcal{Q}=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ is a set of four partitions of the same set Ω. The following are equivalent.

1. There is a regular Latin cube of sort (LC2) such that

$$
\mathcal{Q}=\left\{P_{1} \wedge P_{2}, P_{1} \wedge P_{3}, P_{2} \wedge P_{3}, L\right\}
$$

2. Every subset of three of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension three.
3. There is a group G, unique up to group isomorphism, such that Ω may be identified with $G \times G \times G$ and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $\{(g, 1,1): g \in G\}$, $\{(1, g, 1): g \in G\},\{(1,1, g): g \in G\}$ and $\{(g, g, g): g \in G\}$.

So, either of these two combinatorial conditions leads us to a group.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O'Nan-Scott Theorem.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O'Nan-Scott Theorem.
2. The arguments also hold for infinite sets.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O^{\prime} Nan-Scott Theorem.
2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by induction of the following theorem.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O^{\prime} Nan-Scott Theorem.
2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by induction of the following theorem.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O'Nan-Scott Theorem.
2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by induction of the following theorem.
Theorem
Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.

Comments

1. When G is a finite simple group, the diagonal group $\delta(G)$ plays a role in the O'Nan-Scott Theorem.
2. The arguments also hold for infinite sets.
3. The preceding theorem gives the base case for a proof by induction of the following theorem.

Theorem

Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.
(b) If $m>2$ then there is a group G, unique up to group isomorphism, such that Ω may be identified with G^{m} and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $G_{1}, \ldots, G_{m}, \delta(G)$, where G_{i} has j-th entry 1 for all $j \neq i$, and $\delta(G)$ is the diagonal subgroup $\{(g, g, \ldots, g): g \in G\}$.

References

- J. Dénes and A. D. Keedwell: Latin Squares and their Applications, Akadémiai Kaidó, Budapest, 1974.
- M. Frolov: Recherches sur les permutations carrées. J. Math. Spéc. (3) 4 (1890), 8-11.

References

- J. Dénes and A. D. Keedwell: Latin Squares and their Applications, Akadémiai Kaidó, Budapest, 1974.
- M. Frolov: Recherches sur les permutations carrées. J. Math. Spéc. (3) 4 (1890), 8-11.
- D. A. Preece, S. C. Pearce and J. R. Kerr: Orthogonal designs for three-dimensional experiments. Biometrika 60 (1973), 349-358.

References

- J. Dénes and A. D. Keedwell: Latin Squares and their Applications, Akadémiai Kaidó, Budapest, 1974.
- M. Frolov: Recherches sur les permutations carrées. J. Math. Spéc. (3) 4 (1890), 8-11.
- D. A. Preece, S. C. Pearce and J. R. Kerr: Orthogonal designs for three-dimensional experiments. Biometrika 60 (1973), 349-358.
- R. A. Bailey: Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, Cambridge, 2004.
- C. E. Praeger and C. Schneider: Permutation Groups and Cartesian Decompositions, Cambridge University Press, Cambridge, 2018.

References

- J. Dénes and A. D. Keedwell: Latin Squares and their Applications, Akadémiai Kaidó, Budapest, 1974.
- M. Frolov: Recherches sur les permutations carrées. J. Math. Spéc. (3) 4 (1890), 8-11.
- D. A. Preece, S. C. Pearce and J. R. Kerr: Orthogonal designs for three-dimensional experiments. Biometrika 60 (1973), 349-358.
- R. A. Bailey: Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge University Press, Cambridge, 2004.
- C. E. Praeger and C. Schneider: Permutation Groups and Cartesian Decompositions, Cambridge University Press, Cambridge, 2018.
- R. A. Bailey, P. J. Cameron, C. E. Praeger and C. Schneider: The geometry of diagonal groups. arXiv 2007.10726.

