Latin cubes

R. A. Bailey

University of St Andrews

QMUL (emerita)

Midsummer Combinatorics Workshop, Prague August 2023
Joint work with Peter Cameron (University of St Andrews),
Cheryl Praeger (University of Western Australia) and Csaba Schneider (Universidade Federal de Minas Gerais)

What is a Latin square?

Definition

Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.

What is a Latin square?

Definition

Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

What is a Latin square?

Definition

Let n be a positive integer.
A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.
The symbols may be letters, numbers, colours, ...

A Latin square of order 8

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.

Definition

A partition P is uniform if all of its parts have the same size, in the sense that, whenever Γ_{1} and Γ_{2} are parts of P, there is a bijection from Γ_{1} onto Γ_{2}.

Partitions

Definition

A partition of a set Ω is a set P of pairwise disjoint non-empty subsets of Ω, called parts, whose union is Ω.
Definition
A partition P is uniform if all of its parts have the same size, in the sense that, whenever Γ_{1} and Γ_{2} are parts of P, there is a bijection from Γ_{1} onto Γ_{2}.
Example
If Ω is the set of cells in a Latin square, then there are five natural uniform partitions of Ω :
R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q. So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$;

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

Definition
The supremum, or join, of partitions P and Q is the partition
$P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$
and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.

The partial order on partitions of a set

A natural partial order on partitions of a set is defined by
$P \preccurlyeq Q$ if and only if every part of P is contained in a part of Q.
So $E \preccurlyeq P \preccurlyeq U$ for all partitions P.
Definition
The infimum, or meet, of partitions P and Q is the partition $P \wedge Q$ each of whose parts is a non-empty intersection of a part of P and a part of Q. So $P \wedge Q \preccurlyeq P$ and $P \wedge Q \preccurlyeq Q$; and if $S \preccurlyeq P$ and $S \preccurlyeq Q$ then $S \preccurlyeq P \wedge Q$.

Definition
The supremum, or join, of partitions P and Q is the partition
$P \vee Q$ which satisfies $P \preccurlyeq P \vee Q$ and $Q \preccurlyeq P \vee Q$ and if $P \preccurlyeq S$ and $Q \preccurlyeq S$ then $P \vee Q \preccurlyeq S$.
Draw a graph by putting an edge between two points if they are in the same part of P or the same part of Q. Then the parts of $P \vee Q$ are the connected components of the graph.

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω, we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P}.
- If $P \prec Q$ then put Q higher than P in the diagram.
- If $P \prec Q$ but there is no S in \mathcal{P} with $P \prec S \prec Q$ then draw a line from P to Q.

Hasse diagrams

Given a collection \mathcal{P} of partitions of a set Ω, we can show them on a Hasse diagram.

- Draw a dot for each partition in \mathcal{P}.
- If $P \prec Q$ then put Q higher than P in the diagram.
- If $P \prec Q$ but there is no S in \mathcal{P} with $P \prec S \prec Q$ then draw a line from P to Q.

Here is the Hasse diagram for a Latin square.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise compatible uniform partitions of a set Ω which satisfy $R \wedge C=R \wedge L=C \wedge L=E$ and $R \vee C=R \vee L=C \vee L=U$.

An alternative definition of Latin square

Definition

Let P and Q be uniform partitions of a set Ω. Then P and Q are compatible if

- whenever ω_{1} and ω_{2} are points in the same part of $P \vee Q$, there are points α and β such that
- ω_{1} and α are in the same part of P,
- α and ω_{2} are in the same part of Q,
- ω_{1} and β are in the same part of Q,
- β and ω_{2} are in the same part of P.
- $P \wedge Q$ is uniform.

Definition

A Latin square is a set $\{R, C, L\}$ of pairwise compatible uniform partitions of a set Ω which satisfy $R \wedge C=R \wedge L=C \wedge L=E$ and $R \vee C=R \vee L=C \vee L=U$.
Comment
These definitions can be applied to finite or infinite sets.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.
- Each pair are compatible.

Another nice family of partitions

Definition

Suppose that P_{1}, P_{2} and P_{3} are partitions of a set Ω, none of which is U. Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ is a Cartesian decomposition of Ω of dimension 3 if $\left|\Gamma_{1} \cap \Gamma_{2} \cap \Gamma_{3}\right|=1$ whenever Γ_{i} is a part of P_{i} for $i=1,2,3$.
Taking infima gives a Cartesian lattice.

- Each partition is uniform.
- Each pair are compatible.
- Statisticians call this a completely crossed orthogonal block structure.

Coset partitions

Definition
 Let H be a subgroup of a group G. Then P_{H} is the partition of G into right cosets of H.

Coset partitions

Definition

Let H be a subgroup of a group G. Then P_{H} is the partition of G into right cosets of H.

Proposition

Let H and K be subgroups of a group G. The following hold.

1. P_{H} is uniform.
2. $P_{H} \wedge P_{K}=P_{H \cap K}$.
3. $P_{H} \vee P_{K}=P_{\langle H, K\rangle}$.
4. P_{H} and P_{K} are compatible if and only if $H K=K H$.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

A	B	C	D	E
E	A	B	C	D
B	C	D	E	A
D	E	A	B	C
C	D	E	A	B

A	B	C	D	E
B	A	D	E	C
D	C	E	A	B
C	E	A	B	D
E	D	B	C	A

Latin squares and quasigroups

If the rows, columns and letters of a Latin square are all labelled by the elements of the same set T, then the Latin square induces a quasigroup structure on T by the rule that $x \circ y=z$ if z is the letter in the cell in row x and column y. In particular, Cayley tables of groups are Latin squares.
How can we recognise Cayley tables of groups by a combinatorial condition?

A	B	C	D	E
E	A	B	C	D
B	C	D	E	A
D	E	A	B	C
C	D	E	A	B

Cayley table of cyclic group C_{5}

A	B	C	D	E
B	A	D	E	C
D	C	E	A	B
C	E	A	B	D
E	D	B	C	A

Not a Cayley table of a group

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---	:---			
C	Y	\quad then $X=Y$.		

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---:	:---:			
C	Y	\quad then $X=Y$.		

Theorem (Frolov (1890))
A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---	:---			
C	Y	\quad then $X=Y$.		

Theorem (Frolov (1890))
A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group isomorphism.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---	:---			
C	Y	\quad then $X=Y$.		

Theorem (Frolov (1890))

A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group isomorphism.
So this combinatorial condition enables us to recognise a group: the algebra drops out of the combinatorics.

The Quadrangle Criterion

Definition

A Latin square satisfies the quadrangle criterion if, whenever there are 2×2 subsquares

A	B			
C	X	\quad and \quad	A	B
:---:	:---:			
C	Y	\quad then $X=Y$.		

Theorem (Frolov (1890))

A Latin square is the Cayley table of a group
(possibly after suitable relabelling of the rows and columns)
if and only if it satisfies the quadrangle criterion.
Moreover, if it does satisfy this, then the group is unique up to group isomorphism.
So this combinatorial condition enables us to recognise a group: the algebra drops out of the combinatorics.
(Frolov was in the French army, and was unaware of the notion of "group".)

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

Each letter occurs exactly once in each plane.

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

Each letter occurs exactly once in each plane.

Two distinct parallel lines have either exactly the same letters or no letters in common.

Generalizing Latin squares to higher dimensions

The 3 partitions R, C and L in a Latin square have the property that any 2 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 2.
Can we do something similar with 4 partitions in dimension 3 ?

Each letter occurs exactly once in each plane.

Two distinct parallel lines have either exactly the same letters or no letters in common.

Conditions (1) and (2) give one definition (among very many) of a Latin cube.

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted i), 3 different greenhouse temperatures (denoted j), 3 different fertilizers (k) and 3 different spacings between plants (ℓ).

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted i), 3 different greenhouse temperatures (denoted j), 3 different fertilizers (k) and 3 different spacings between plants (ℓ).
There are 81 combinations but only 27 greenhouses.

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted i), 3 different greenhouse temperatures (denoted j), 3 different fertilizers (k) and 3 different spacings between plants (ℓ).
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \quad \bmod (3)\right\}<C_{3}^{4}
$$

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted i), 3 different greenhouse temperatures (denoted j), 3 different fertilizers (k) and 3 different spacings between plants (ℓ).
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
\begin{gathered}
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \quad \bmod (3)\right\}<C_{3}^{4} . \\
\text { Put } x=a b^{-1}, y=b c^{-1}, z=c d^{-1} \text { and } t=x y z=a d^{-1}
\end{gathered}
$$

An approach from statistics

In 1945, statistician David Finney introduced fractional factorial designs. His method implicitly used finite Abelian groups, but without that vocabulary. (He claimed to know nothing about groups.)
Suppose we want to do an experiment on growing tomatoes, combining 3 different varieties (denoted i), 3 different greenhouse temperatures (denoted j), 3 different fertilizers (k) and 3 different spacings between plants (ℓ).
There are 81 combinations but only 27 greenhouses.
Use the elements of

$$
H=\left\{a^{i} b^{j} c^{k} d^{\ell}: i+j+k+\ell \equiv 0 \bmod (3)\right\}<C_{3}^{4} .
$$

Put $x=a b^{-1}, y=b c^{-1}, z=c d^{-1}$ and $t=x y z=a d^{-1}$.
Then $H=\langle x\rangle \times\langle y\rangle \times\langle z\rangle$ and the coset partitions of H defined by any 3 of $\langle x\rangle,\langle y\rangle,\langle z\rangle$ and $\langle t\rangle$ are the minimal non-trivial partitions in a Cartesian lattice of dimension 3.

We generalize this to any group G (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.

We generalize this to any group G (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Consider these subgroups.

$$
\begin{array}{cl}
G_{1} & \{(x, 1,1): x \in G\} \\
G_{2} & \{1, y, 1): y \in G\} \\
G_{3} & \{1,1, z): z \in G\} \\
\delta(G) & \{(x, x, x): x \in G\}
\end{array}
$$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.

We generalize this to any group G (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Consider these subgroups.

$$
\begin{array}{cl}
G_{1} & \{(x, 1,1): x \in G\} \\
G_{2} & \{1, y, 1): y \in G\} \\
G_{3} & \{1,1, z): z \in G\} \\
\delta(G) & \{(x, x, x): x \in G\}
\end{array}
$$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.
Each of these groups give a coset partition.

We generalize this to any group G (Maybe infinite?)

Put $\Omega=G \times G \times G=\{(x, y, z): x, y, z \in G\}$.
Consider these subgroups.

$$
\begin{array}{cl}
G_{1} & \{(x, 1,1): x \in G\} \\
G_{2} & \{1, y, 1): y \in G\} \\
G_{3} & \{1,1, z): z \in G\} \\
\delta(G) & \{(x, x, x): x \in G\}
\end{array}
$$

$\delta(G)$ is the diagonal subgroup of $G \times G \times G$.
Each of these groups give a coset partition.
These have the desired property that any 3 of them are the minimal non-trivial partitions in a Cartesian lattice of dimension 3.

Hasse diagram for subgroups involved

Hasse diagram for subgroups involved

Each partition is uniform.

Hasse diagram for subgroups involved

Each partition is uniform.
Each pair are compatible.
$G \times G \times G$

Hasse diagram for subgroups involved

Each partition is uniform.
All suprema are included,
Each pair are compatible.
$G \times G \times G$

$\{1\}$

Hasse diagram for subgroups involved

Each partition is uniform.
All suprema are included,
Each pair are compatible.
$G \times G \times G \quad$ but not all infima.

Comments

1. If the group G is not Abelian, then we cannot include all infima without destroying compatibility.

Comments

1. If the group G is not Abelian, then we cannot include all infima without destroying compatibility.
2. In 1984, Danish statistician Tue Tjur pointed out that, for statistical purposes, closure under suprema is more important than closure under infima, and that such closure does not destroy compatibility.

Theorem about diagonal semilattices

Theorem
Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.

Theorem about diagonal semilattices

Theorem
Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.

Theorem about diagonal semilattices

Theorem
Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.
(b) If $m>2$ then there is a group G, unique up to group isomorphism, such that Ω may be identified with G^{m} and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $G_{1}, \ldots, G_{m}, \delta(G)$, where G_{i} has j-th entry 1 for all $j \neq i$, and $\delta(G)$ is the diagonal subgroup $\{(g, g, \ldots, g): g \in G\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.

Theorem about diagonal semilattices

Theorem

Let \mathcal{Q} be a set of $m+1$ partitions of the same set Ω, where $m \geq 2$. Suppose that every subset of m of the partitions in \mathcal{Q} form the minimal non-trivial partitions in a Cartesian lattice of dimension m.
(a) If $m=2$ then there is a Latin square on Ω, unique up to paratopism, such that $\mathcal{Q}=\{R, C, L\}$.
(b) If $m>2$ then there is a group G, unique up to group isomorphism, such that Ω may be identified with G^{m} and the partitions in \mathcal{Q} are the right-coset partitions of the subgroups $G_{1}, \ldots, G_{m}, \delta(G)$, where G_{i} has j-th entry 1 for all $j \neq i$, and $\delta(G)$ is the diagonal subgroup $\{(g, g, \ldots, g): g \in G\}$.

A paratopism is any combination of permuting rows, permuting columns, permuting symbols, and interchanging the three partitions amongst themselves.
For $m>2$, the combinatorial assumptions in the statement of the theorem force the existence of a group.

Final comments

1. The hardest part of the proof was the case of dimension 3. This involved findng patterns in two-dimensional subspaces, then moving to planes in different directions, until we could put all the pieces together to obtain the condition in Frolov's Theorem.

Final comments

1. The hardest part of the proof was the case of dimension 3. This involved findng patterns in two-dimensional subspaces, then moving to planes in different directions, until we could put all the pieces together to obtain the condition in Frolov's Theorem.
2. The rest of the proof followed by rather careful induction on the dimension.

Final comments

1. The hardest part of the proof was the case of dimension 3. This involved findng patterns in two-dimensional subspaces, then moving to planes in different directions, until we could put all the pieces together to obtain the condition in Frolov's Theorem.
2. The rest of the proof followed by rather careful induction on the dimension.
3. Later, in joint work with Michael Kinyon, we extended these results to the multidimensional equivalent of sets of mutually orthogonal Latin squares.
