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Motivation: I

In his talk on 2 November, Wim Haemers asked
“What does the spectrum of the Laplacian matrix of a graph
tell us about properties of that graph?”

In his talk on 4 November, Misha Muzychuk asked

“What insights or problems can algebraic graph theorists
gain from work in statistics?”
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Example: an experiment in a field

We have 6 varieties of cabbage to compare in this field.
How do we avoid bias?
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Partition the experimental units into homogeneous blocks
and plant each variety on one plot in each block.
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Experiments in blocks

I have v treatments that I want to compare.
I have b blocks, with k experimental units in each block.
(These are physcial objects, that exist before I decide where to
put the treatments.)
(In the field example, the experimental units were plots.)

blocks b k treatments v
contiguous plots 4 6 cabbage varieties 6

wine tasters 12 4 wines 16

How should I choose a block design?

What makes a block design good?
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Two designs for 6 treatments in 6 blocks of size 2
(shown with edges as blocks). Which is better?
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Statisticians know that it is best
to use all treatments as equally
as possible.

Biologists know that they
should compare all treatments
with the same thing.

This is always true when there
are no blocks, but may not be
otherwise.

They should not test treatment 6
now and compare the results
with testing treatment 1 ten
years ago.
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Two designs with v = 5, b = 7, k = 3: which is better?

Conventions: columns are blocks
(sometimes rows, but the boxes should make it clear);
order of treatments within each block is irrelevant;
order of blocks is irrelevant.

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5

binary non-binary

A design is binary if no treatment occurs more than once in any
block.
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Two designs with v = 15, b = 7, k = 3: which is better?

1 1 2 3 4 5 6
2 4 5 6 10 11 12
3 7 8 9 13 14 15

1 1 1 1 1 1 1
2 4 6 8 10 12 14
3 5 7 9 11 13 15

replications differ by ≤ 1 queen-bee design

The replication of a treatment is its number of occurrences.

A design is a queen-bee design if there is a treatment that
occurs in every block.
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Two designs with v = 7, b = 7, k = 3: which is better?

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

balanced (2-design) non-balanced

A binary design is balanced if every pair of distinct treaments
occurs together in the same number of blocks.

Bailey Algebraic graph theory and block designs 8/48



Experimental units and incidence matrix

There are bk experimental units.

If ω is an experimental unit, put

f (ω) = treatment on ω

g(ω) = block containing ω.

For i = 1, . . . , v put

ri = |{ω : f (ω) = i}| = replication of treatment i.

For i = 1, . . . , v and j = 1, . . . , b, let

nij = |{ω : f (ω) = i and g(ω) = j}|

= number of experimental units in block j which have
treatment i.

The v× b incidence matrix N has entries nij.
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Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit, with edge ω joining

vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,

I one vertex for each block,
I one edge for each experimental unit, with edge ω joining

vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,

I one edge for each experimental unit, with edge ω joining
vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit, with edge ω joining

vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit, with edge ω joining

vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Levi graph (also called incidence graph)

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit, with edge ω joining

vertex f (ω) (the treatment on ω)
to vertex g(ω) (the block containing ω).

It is a bipartite graph,
with nij edges between treatment-vertex i and block-vertex j.

Bailey Algebraic graph theory and block designs 10/48



Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3
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Concurrence graph

The concurrence graph G of a block design ∆ has

I one vertex for each treatment,
I one edge for each unordered pair α, ω, with α 6= ω,

g(α) = g(ω) (in the same block) and f (α) 6= f (ω):
this edge joins vertices f (α) and f (ω).

There are no loops.

If i 6= j then the number of edges between vertices i and j is

λij =
b

∑
s=1

nisnjs;

this is called the concurrence of i and j,
and is the (i, j)-entry of Λ = NN>.
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Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3
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Example 3: v = 15, b = 7, k = 3
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Laplacian matrices

The Laplacian matrix L of the concurrence graph G is a
v× v matrix with (i, j)-entry as follows:

I if i 6= j then
Lij = −(number of edges between i and j) = −λij;

I Lii = valency of i = ∑
j 6=i

λij.

The Laplacian matrix L̃ of the Levi graph G̃ is a
(v + b)× (v + b) matrix with (i, j)-entry as follows:

I L̃ii = valency of i

=

{
k if i is a block
replication ri of i if i is a treatment

I if i 6= j then Lij = −(number of edges between i and j)

=


0 if i and j are both treatments
0 if i and j are both blocks
−nij if i is a treatment and j is a block, or vice versa.
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Connectivity

All row-sums of L and of L̃ are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.
1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. G̃ is a connected graph;
4. 0 is a simple eigenvalue of L̃;
5. the design ∆ is connected in the sense that all differences between

treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Generalized inverse

Under the assumption of connectivity,
the Moore–Penrose generalized inverse L− of L is defined by

L− =

(
L +

1
v

Jv

)−1

− 1
v

Jv,

where Jv is the v× v all-1 matrix.

(The matrix
1
v

Jv is the orthogonal projector onto the null space
of L.)

The Moore–Penrose generalized inverse L̃− of L̃ is defined
similarly.
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Electrical networks

We can consider the concurrence graph G as an electrical
network with a 1-ohm resistance in each edge.
Connect a 1-volt battery between vertices i and j.
Current flows in the network, according to these rules.
1. Ohm’s Law:

In every edge, voltage drop = current × resistance =
current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery, the
total current coming in is equal to the total current going
out.

Find the total current I from i to j, then use Ohm’s Law to
define the effective resistance Rij between i and j as 1/I.
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Electrical networks: effective resistance

Theorem
The effective resistance Rij between vertices i and j in G is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Example 2 calculation: v = 8, b = 4, k = 3
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. . . Or we can use the Levi graph

Theorem
If i and j are treatment vertices in the Levi graph G̃
and R̃ij is the effective resistance between them in G̃ then

R̃ij = kRij.
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Example 2 yet again: v = 8, b = 4, k = 3
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A-Optimality

A block design is called A-optimal if it minimizes the average
of the effective resistances Rij in the concurrence graph;

—equivalently, it minimizes the average of the effective
resistances R̃ij between treatment vertices in the Levi graph;
—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;
over all block designs with block size k and the given v and b.
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Spanning trees

A spanning tree for a graph is a collection of edges of the graph
which form a tree (connected graph with no cycles)
and which include every vertex.

Theorem (Gaffke, 1982)

Let G and G̃ be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.
Then the number of spanning trees for G̃ is equal to
kb−v+1 times the number of spanning trees for G.
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D-Optimality

A block design is called D-optimal if it maximizes the
geometric mean of the non-trivial eigenvalues of the Laplacian
matrix L;

—equivalently, it maximizes the number of spanning trees for
the concurrence graph G;
—equivalently, it maximizes the number of spanning trees for
the Levi graph G̃;
over all block designs with block size k and the given v and b.
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BIBDs are optimal

Theorem (Kshirsagar, 1958; Kiefer, 1975)

If there is a balanced incomplete-block design (BIBD) (2-design)
for v treatments in b blocks of size k,
then it is A- and D-optimal.
Moreover, no non-BIBD is A- or D-optimal.

Bailey Algebraic graph theory and block designs 28/48



Folklore

For decades, it was assumed that, for given values of v, b and k,
I the A-optimal designs are the same as the D-optimal

designs;

I if a design is A-optimal then its replications are as equal as
possible;

I if a design is D-optimal then its replications are as equal as
possible.
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Minimal connectivity

If the block design is connected then bk ≥ b + v− 1.

If the block design is connected and b(k− 1) = v− 1 then
the Levi graph is a tree and
the concurrence graph is a b-tree of k-cliques.
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Optimality of minimally connected designs

The Levi graph is a tree,
so all connected designs are equally good under the D-criterion.

The Levi graph is a tree,
so effective resistance = graph distance,
so the only A-optimal designs are the queen-bee designs.
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Nearly minimal connectivity

If the block design is connected then bk ≥ b + v− 1.

If the block design is connected and b(k− 1) = v then
the Levi graph has a single cycle.

Each spanning tree is made by removing a single edge from the
cycle, so the D-optimal designs are those in which the
maximum number of edges are in the cycle.
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A-optimal designs when k = 2 and b = v

v = 6 v = 7 v = 8
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A-optimal designs when k = 2 and b = v

v = 7 v = 8 v = 9
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A-optimal designs when k = 2 and b = v

v = 8 v = 9 v = 10
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A-optimal designs when k = 2 and b = v

v = 9 v = 10 v = 11

ss s
s s

s s
s

s
............................................................................

..........

..........

..........

..........

..........

..........

..........

.....

........................................................................... ..........................................................................

.

........................................................................... ..........................................................................

.

...................
...................

...................
...................

.

.............................................................................

............................................................................ ss s
s s

s s
s

ss
............................................................................

..........

..........

..........

..........

..........

..........

..........

.....

........................................................................... ..........................................................................

.

........................................................................... ..........................................................................

.

...................
...................

...................
...................

.

.............................................................................

.............................................................................

............................................................................ ss s
s s

s s
s

sss
............................................................................

..........

..........

..........

..........

..........

..........

..........

.....

........................................................................... ..........................................................................

.

........................................................................... ..........................................................................

.

...................
...................

...................
...................

.

.............................................................................

.............................................................................

.............................................................................

............................................................................

For v ≥ 13 the A-optimal design is a triangle with all other
edges adjacent to a single vertex of the triangle.
For v = 12, the cycle can be either a triangle or a square.
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For v ≥ 13 the A-optimal design is a triangle with all other
edges adjacent to a single vertex of the triangle.
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Large blocks; many unreplicated treatments

Suppose that r̄ = ∑i ri

v
< 2.

Blocks are rows, treatments with single replication are drones.

b blocks



k′ plots n plots

...
...

v′ treatments bn drones
all single replication

whole design ∆

Whole design ∆ has v treatments in b blocks of size k = k′ + n;
the subdesign Γ has v′ core treatments in b blocks of size k′.
(The core treatments may include extra drones.)

n ≥ n0 =

⌊
2v− bk

b

⌋
k′ ≤ k0 = k− n0
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The drones contribute nothing to the number of spanning trees.
R̃A1C1 = 1 + R̃AC + 1.
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The drones contribute nothing to the number of spanning trees.

R̃A1C1 = 1 + R̃AC + 1.
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Sum of the pairwise resistances

Theorem (cf. Herzberg and Jarrett, 2007)

If there are n drones in each block of ∆,
and the core design Γ has v′ treatments in b blocks of size k′

then the sum of the treatment resistances in ∆

= bn(bn + v′ − 1) + RT(Γ) + nRBT(Γ) + n2RB(Γ),
where

RT(Γ) = the sum of the treatment resistances in Γ
RB(Γ) = the sum of the block resistances in Γ

RBT(Γ) = the sum of the treatment-block
resistances in Γ.
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Consequences

1. For D-optimality, have as few drones as possible.

2. If v is large then n is large,
so we need to focus on reducing RB(Γ),
so it may be best to increase the number of drones
and decrease k′ (the size of blocks in the core design Γ),
so that average replication within Γ is more than 2.
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An example of this non-intuitive result

If there are 4(2 + n) varieties in 4 blocks of size 4 + n,
the design on the left is A-better than the design on the right
if and only if n < 50.

1 2 3 4 n drones

1 2 5 6 n drones

3 6 7 8 n drones

4 5 7 8 n drones

1 2 3 n + 1 drones

1 2 4 n + 1 drones

1 3 4 n + 1 drones

2 3 4 n + 1 drones
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Conjectures

Conjecture (Underpinned by theoretical work by C.-S. Cheng)

If the connectivity is more than minimal, then all D-optimal designs
have (almost) equal replication.

Conjecture (Underpinned by theoretical work by J. R. Johnson
and M. Walters)

If r̄ > 3.5 then designs optimal under one criterion are (almost)
optimal under the other criteria.
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Motivation: IIa

When I am asked to help in the design of a real experiment,
I typically use all sorts of knowledge about nice structures like
orthogonal Latin squares, distance-regular graphs, and
association schemes.

Most other people designing experiments do not have that
knowledge, so they ask the computer to find a good design.
To cut down the amount of work needed, they typically make
some assumptions about conditions that good designs must
satisfy.
Within the last nine months, three collaborators contacted me
by email to say something like

You might be interested in this optimal design
that my computer found.
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Motivation: IIb

In one case, I replied

Here is a better design than yours. It is not equi-replicate.

In another, I sent the correspondent a better design, taken from
a published paper of mine. She replied

I am surprised. Two blocks in your design have the same
set of core treatments. I had assumed that that would not
be good, so did not allow my program to look for things like
that.

Third case: similar.

If someone can find a function f (v, b, k) and
a criterion on its value such that, when the criterion is satisfied,
programs should relax their usual assumptions in their search
for good experimental designs, it would be immensely useful.
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