## Abstract

The expectation part of a linear model is often presented as an equation with unknown parameters, and the reader is supposed to know that this is shorthand for a whole family of expectation models (for example, is there interaction or not?).
I find it helpful to show the family of models on a Hasse diagram

By changing the lengths of the edges in this diagram, we can go a stage further and use it as a visual display of the analysis of variance

Phenomics and Bioinformatics Research Centre University of South Australia, 11 September 2017

QMUL (emerita)
 University of London

Linear model for two factors

Given two treatment factors $A$ and $B$, the linear model for response $Y_{\omega}$ on unit $\omega$ is often written as follows. If $A(\omega)=i$ and $B(\omega)=j$ then

$$
Y_{\omega}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{\omega},
$$

where the $\varepsilon_{\omega}$ are random variables with zero means and a covariance matrix whose eigenspaces we know.
Some authors: "Too many parameters! Let's impose constraints."
(a) $\sum \alpha_{i}=0$, and so on, or
(b) $\sum_{i} r_{i} \alpha_{i}=0$, where $r_{i}=|\{\omega: A(\omega)=i\}|$, and so on.

## Linear model with constraints: some bad consequences

$$
Y_{\omega}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{\omega}
$$

(a) $\sum \alpha_{i}=0$, and so on, or
(b) $\sum_{i} r_{i} \alpha_{i}=0$, where $r_{i}=|\{\omega: A(\omega)=i\}|$, and so on.

- It is too easy to give all parameters the same status, and then the conclusions " $\beta_{j}=0$ for all $j$ " and
" $\gamma_{i j}=0$ for all $i$ and $j$ " appear to be comparable.
- If some parameters are, after testing, deemed to be zero, the estimated values of the others may not give the vector of fitted values.
For example, if both main effects and interaction are deemed to be zero, then $\hat{\mu}$ under constraint (a) is not the fitted overall mean if replications are unequal.
Popular software allows both of these.

| Say goodbye to linear models with constraints | Nelder's approach to such linear models |
| :---: | :---: |
|  | $Y_{\omega}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{\omega}$ <br> John Nelder had a rant about the constraints on parameters in his 1977 paper 'A reformulation of linear models' and various later papers too. <br> Essentially he said: <br> - if $\gamma_{i j}=0$ for all $i$ and $j$ then the model simplifies to $\Upsilon_{\omega}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{\omega}$ <br> so that the expectation of the vector $\mathbf{Y}$ lies in a subspace of dimension at most $n+m-1$, where $n$ and $m$ are the numbers of levels of $A$ and $B$; <br> - if $\beta_{j}=0$ for all $j$, but the $\gamma_{i j}$ are not all zero, then the model does not simplify at all. |

## RAB's approach to such linear models

$$
Y_{\omega}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\varepsilon_{\omega}
$$

This equation is a short-hand for saying that there are FIVE subspaces which we might suppose to contain the vector $\mathbb{E}(\mathbf{Y})$.
Let us parametrize these subspaces separately, and consider the relationships between them.

This is the approach which I always use in teaching and in consulting, and in my 2008 book.

## Expectation subspaces

$$
\begin{aligned}
\mathbb{E}(\mathbf{Y}) \in V_{A} & \Longleftrightarrow \quad \begin{array}{l}
\text { there are constants } \alpha_{i} \text { such that } \\
\mathbb{E}\left(Y_{\omega}\right)=\alpha_{i} \text { whenever } A(\omega)=i .
\end{array} \\
\operatorname{dim}\left(V_{A}\right) & =\quad \begin{array}{l}
\text { number of levels of } A=n .
\end{array} \\
\mathbb{E}(\mathbf{Y}) \in V_{B} & \Longleftrightarrow \quad \begin{array}{l}
\text { there are constants } \beta_{j} \text { such that } \\
\mathbb{E}\left(Y_{\omega}\right)=\beta_{j} \text { whenever } B(\omega)=j .
\end{array} \\
\mathbb{E}(\mathbf{Y}) \in V_{U} & \Longleftrightarrow \quad \begin{array}{l}
\text { there is a constant } \mu \text { such that } \\
\mathbb{E}\left(Y_{\omega}\right)=\mu \text { for all } \omega .
\end{array} \\
\mathbb{E}(\mathbf{Y}) \in V_{A}+V_{B} & \Longleftrightarrow \quad \begin{array}{l}
\text { there are constants } \theta_{i} \text { and } \phi_{j} \text { such that } \\
\mathbb{E}\left(Y_{\omega}\right)=\theta_{i}+\phi_{j} \text { if } A(\omega)=i \text { and } B(\omega)=j .
\end{array} \\
\mathbb{E}(\mathbf{Y}) \in V_{A \wedge B} & \Longleftrightarrow \quad \begin{array}{l}
\text { there are constants } \gamma_{i j} \text { such that } \\
\\
\mathbb{E}\left(Y_{\omega}\right)=\gamma_{i j} \text { if } A(\omega)=i \text { and } B(\omega)=j .
\end{array}
\end{aligned}
$$

| Dimensions when $A$ has $n$ levels and $B$ has $m$ levels | The partial order on subspaces |
| :---: | :---: |
| For general factors $A$ and $B$ : $\operatorname{dim}\left(V_{A}+V_{B}\right)=\operatorname{dim}\left(V_{A}\right)+\operatorname{dim}\left(V_{B}\right)-\operatorname{dim}\left(V_{A} \cap V_{B}\right) .$ <br> If all combinations of levels of $A$ and $B$ occur, then $V_{A} \cap V_{B}=V_{U},$ <br> which has dimension 1 , so $\operatorname{dim}\left(V_{A}+V_{B}\right)=\operatorname{dim}\left(V_{A}\right)+\operatorname{dim}\left(V_{B}\right)-1=n+m-1,$ <br> and $A \wedge B$ has $n m$ levels so $\operatorname{dim}\left(V_{A \wedge B}\right)=n m .$ | If $V_{1}$ and $V_{2}$ are two subspaces, write $V_{1}<V_{2}$ to indicate that $V_{1}$ is a subspace of $V_{2}$ but $V_{1} \neq V_{2}$. <br> Write $V_{1} \leq V_{2}$ to mean that $V_{1}$ is a subspace of $V_{2}$ (including the possibility that $V_{1}=V_{2}$ ). <br> The relation "is a subspace of" is a partial order, which means that <br> - $V \leq V$ for all subspaces $V$; <br> - if $V_{1} \leq V_{2}$ and $V_{2} \leq V_{1}$ then $V_{1}=V_{2}$; <br> - if $V_{1} \leq V_{2}$ and $V_{2} \leq V_{3}$ then $V_{1} \leq V_{3}$. |

Hasse diagram
Every partially ordered set (poset)
can be shown on a Hasse diagram.
Put a symbol for each object (here, a subspace).
If $V_{1}<V_{2}$ then
the symbol for $V_{1}$ is lower in the diagram
than the symbol for $V_{2}$,
and is joined to it by lines that are traversed upwards.
So we can use a Hasse diagram to show the subspaces which
are being considered to model the expectation of $\mathbf{Y}$.
Now it is helpful to show the dimension of each subspace on
the diagram.

## Hasse diagram for model subspaces



If one subspace is contained in another then it is joined to it by an upwards line, or a sequence of such lines.


## What about orthogonality?

Vector subspaces $V_{1}$ and $V_{2}$ are geometrically orthogonal to each other if

$$
V_{1} \cap\left(V_{1} \cap V_{2}\right)^{\perp} \quad \text { is orthogonal to } \quad V_{2} \cap\left(V_{1} \cap V_{2}\right)^{\perp} .
$$

If every pair of subspaces in our model collection is geometrically orthogonal, then all routes from the top of the Hasse diagram to the bottom will give the same result.

Otherwise, different routes can give different conclusions for some data vectors.

## Example with two treatment factors: feeding chickens

Four diets for feeding newly-hatched chickens were compared. The diets consisted of all levels of Protein (groundnuts or soya bean) with two levels of Fishmeal (added or not) Each diet was fed to two chickens, and they were weighed at the end of six weeks.


## Chicken example: anova

(Subset of data from Carpenter and Duckworth, 1941)

| Source | SS | df | MS | VR |
| :--- | ---: | ---: | ---: | ---: |
| Protein | 4704.5 | 1 | 4704.50 | 35.57 |
| Fishmeal | 3120.5 | 1 | 3120.50 | 23.60 |
| Protein $\wedge$ Fishmeal | 128.0 | 1 | 128.00 | 0.97 |
| residual | 529.0 | 4 | 132.25 |  |

You know how to interpret the anova table: do the scientists who did the experiment know how to?

## Scaling the Hasse diagram of expectation subspaces

Suppose that $V_{1}$ and $V_{2}$ are expectation subspaces, with $V_{1}<V_{2}$,
and an edge joining $V_{1}$ to $V_{2}$.
The mean square for
the extra fit in $V_{2}$ compared to the fit in $V_{1}$ is

$$
\frac{\text { SS(fitted values in } \left.V_{2}\right)-\mathrm{SS}\left(\text { fitted values in } V_{1}\right)}{\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1}\right)} .
$$

Scale the Hasse diagram so that each edge has length proportional to the relevant mean square, and show the residual mean square to give a scale.

| Chickens: scaled Hasse diagram of expectation subspaces | Example: an experiment about protecting metal |
| :---: | :---: |
|  <br> There is no evidence of any interaction, so we can simplify to the additive model <br> (but we don't change the residual mean square). <br> Neither main effect is zero, so we cannot simplify further. | (Data from Crowder and Kimber, 1997) <br> An experiment was conducted to compare two protective dyes for metal, both with each other and with no dye. Ten braided metal cords were broken into three pieces. The three pieces of each cord were randomly allocated to the three treatments. After the dyes had been applied, the cords were left to weather for a fixed time, then their strengths were measured, and recorded as a percentage of the nominal strength specification. <br> Factors: Dye, with three levels (no dye, dye A, Dye B); Cords, with ten levels; $U$, with one level; $E$, with 30 levels. |


| Cords: Hasse diagram of expectation subspaces | Cords: Scaled Hasse diagram of expectation subspaces |
| :---: | :---: |
|  |  |
| We assume that there are differences between cords, so all the models that we consider include $V_{\text {cords }}$. | 10 - $V_{\text {cords }}$ |
| There is another factor $T$ (To-dye-or-not-to-dye). <br> It has one level on 'no dye' and another level on both real dyes. | There is no evidence of a difference between dye A and dye B; so we can simplify to the model $V_{\text {cords }}+V_{T}$. <br> Now there is definitely a difference between no dye and real dyes. |

## An experiment with a quantitative factor

(Data from Yates, 1937)
An experiment on forage crops compared five seed mixtures in the presence and absence of nitrogen fertilizer. All ten combinations were grown in plots in five different fields. For each crop mixture in each field, the recorded response is improvement in yield, in tons per acre, if fertilizer is added.
Fields are like cords: we assume that there are differences between them but we do not care about their differences.
Crop mixtures are like diets or dyes: we are interested in their differences.

Crop mixtures are not like diets and dyes, because the levels are quantitative:

| $100 \%$ oats | $75 \%$ oats | $50 \%$ oats | $25 \%$ oats | $0 \%$ oats |
| :---: | :---: | :---: | :---: | :---: |
| $0 \%$ vetch | $25 \%$ vetch | $50 \%$ vetch | $75 \%$ vetch | $100 \%$ vetch |

## An intermediate model: linear in vetch




$$
\begin{aligned}
& \text { A (comparatively simple) biodiversity experiment } \\
& A, B, C, D, E, F \text {-size types of freshwater "shrimp". } \\
& \text { Put } 12 \text { shrimps in a jar with stream water and alder leaf litter. } \\
& \text { Measure how much leaf litter is eaten after } 28 \text { days. } \\
& \text { Experimental unit }=\text { jar. } \\
& \mathbb{E}(\mathbf{Y}) \in V_{U} \quad \Longleftrightarrow \quad \text { there is a constant } \mu \text { such that } \\
& \mathbb{E}\left(Y_{\omega}\right)=\mu \text { for all } \omega . \\
& \mathbb{E}(\mathbf{Y}) \in V_{R} \quad \Longleftrightarrow \quad \text { there are constants } \alpha_{j} \text { such that } \\
& \mathbb{E}\left(Y_{\omega}\right)=\alpha_{j} \text { whenever } R(\omega)=j . \\
& \mathbb{E}(\mathbf{Y}) \in V_{S} \quad \Longleftrightarrow \quad \text { there are constants } \beta_{i} \text { such that } \\
& \mathbb{E}\left(Y_{\omega}\right)=\sum_{i=1}^{6} \beta_{i} x_{i}(\omega) . \\
& \mathbb{E}(\mathbf{Y}) \in V_{R}+V_{S} \Longleftrightarrow \mathbb{E}\left(Y_{\omega}\right)=\alpha_{R(\omega)}+\sum_{i=1}^{6} \beta_{i} x_{i}(\omega) . \\
& \mathbb{E}(\mathbf{Y}) \in V_{R * S} \quad \Longleftrightarrow \quad \text { there are constants } \gamma_{i j} \text { such that } \\
& \mathbb{E}\left(Y_{\omega}\right)=\sum_{i=1}^{6} \gamma_{i, R(\omega)} x_{i}(\omega) . \\
& \mathbb{E}(\mathbf{Y}) \in V_{T} \quad \Longleftrightarrow \quad \mathbb{E}\left(Y_{\omega}\right)=\delta_{T(\omega)} .
\end{aligned}
$$



Diagram from a paper in Global Change Biology

Nicolas Ballarini at Medizinische Universität Wien is developing an R shiny app to draw both the unscaled and scaled version of the Hasse diagram, showing various useful information.


## Summary

- Stop pretending that the expectation part of the linear model is a single model with side conditions on its parameters, and recognize that it is, almost always, a family of possible models to describe the expectation.
- Recognize the relationships between the different expectation models being considered, and show these on a Hasse diagram.
- After the data are collected, scale the lengths of the edges of the Hasse diagram to show the relevant mean squares, as a visual summary of the analysis of variance.
- Use the Hasse diagram, recursively from the top, to analyse the data and fit a model.

