

Linear model for two factors	Linear model with constraints: some bad consequences
Given two treatment factors <i>A</i> and <i>B</i> , the linear model for response Y_{ω} on unit ω is often written as follows. If $A(\omega) = i$ and $B(\omega) = j$ then $Y_{\omega} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{\omega},$ where the ε_{ω} are random variables with zero means and a covariance matrix whose eigenspaces we know. Some authors: "Too many parameters! Let's impose constraints." (a) $\sum_{i} \alpha_i = 0$, and so on, or (b) $\sum_{i} r_i \alpha_i = 0$, where $r_i = \{\omega : A(\omega) = i\} $, and so on.	 Y_ω = μ + α_i + β_j + γ_{ij} + ε_ω (a) ∑_i α_i = 0, and so on, or (b) ∑_i r_iα_i = 0, where r_i = {ω : A(ω) = i} , and so on. It is too easy to give all parameters the same status, and then the conclusions "β_j = 0 for all j" and "γ_{ij} = 0 for all i and j" appear to be comparable. If some parameters are, after testing, deemed to be zero, the estimated values of the others may not give the vector of fitted values. For example, if both main effects and interaction are deemed to be zero, the fitted overall mean if replications are unequal.
	Popular software allows both of these.

RAB's approach to such linear models	Expectation subspaces
$Y_{\omega} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{\omega}$ This equation is a short-hand for saying that there are FIVE subspaces which we might suppose to contain the vector $\mathbb{E}(\mathbf{Y})$. Let us parametrize these subspaces separately, and consider the relationships between them. This is the approach which I always use in teaching and in consulting, and in my 2008 book.	$\begin{split} \mathbb{E}(\mathbf{Y}) \in V_A & \iff & \text{there are constants } a_i \text{ such that} \\ \mathbb{E}(Y_{\omega}) = a_i \text{ whenever } A(\omega) = i. \\ \dim(V_A) & = & \text{number of levels of } A = n. \\ \mathbb{E}(\mathbf{Y}) \in V_B & \iff & \text{there are constants } \beta_j \text{ such that} \\ \mathbb{E}(Y_{\omega}) = \beta_j \text{ whenever } B(\omega) = j. \\ \mathbb{E}(\mathbf{Y}) \in V_U & \iff & \text{there is a constant } \mu \text{ such that} \\ \mathbb{E}(Y_{\omega}) = \mu \text{ for all } \omega. \\ \mathbb{E}(\mathbf{Y}) \in V_A + V_B & \iff & \text{there are constants } \theta_i \text{ and } \phi_j \text{ such that} \\ \mathbb{E}(Y_{\omega}) = \theta_i + \phi_j \text{ if } A(\omega) = i \text{ and } B(\omega) = j. \\ \mathbb{E}(\mathbf{Y}) \in V_{A \wedge B} & \iff & \text{there are constants } \gamma_{ij} \text{ such that} \\ \mathbb{E}(Y_{\omega}) = \gamma_{ij} \text{ if } A(\omega) = i \text{ and } B(\omega) = j. \\ \end{split}$

Dimensions when A has n levels and B has m levels	The partial order on subspaces
For general factors A and B:	
$\dim(V_A + V_B) = \dim(V_A) + \dim(V_B) - \dim(V_A \cap V_B).$ If all combinations of levels of <i>A</i> and <i>B</i> occur, then $V_A \cap V_B = V_U,$ which has dimension 1, so	If V_1 and V_2 are two subspaces, write $V_1 < V_2$ to indicate that V_1 is a subspace of V_2 but $V_1 \neq V_2$. Write $V_1 \leq V_2$ to mean that V_1 is a subspace of V_2 (including the possibility that $V_1 = V_2$). The relation "is a subspace of" is a partial order, which means that $V \leq V$ for all subspaces V ;
$\dim(V_A + V_B) = \dim(V_A) + \dim(V_B) - 1 = n + m - 1,$ and $A \wedge B$ has nm levels so	 if V₁ ≤ V₂ and V₂ ≤ V₁ then V₁ = V₂; if V₁ ≤ V₂ and V₂ ≤ V₃ then V₁ ≤ V₃.
$\dim(V_{A \wedge B}) = nm.$	10/29

Hasse diagram	Hasse diagram for model subspaces
Every partially ordered set (poset) can be shown on a Hasse diagram. Put a symbol for each object (here, a subspace).	$nm \blacksquare V_{A \land B}$ full model
If $V_1 < V_2$ then the symbol for V_1 is lower in the diagram than the symbol for $V_{2,}$ and is joined to it by lines that are traversed upwards.	$n + m - 1$ $V_A + V_B$ additive model V_A n m V_B only factor <i>B</i> makes any difference
So we can use a Hasse diagram to show the subspaces which are being considered to model the expectation of Y . Now it is helpful to show the dimension of each subspace on	$1 \blacksquare V_u$ null model
the diagram.	If one subspace is contained in another then it is joined to it by an upwards line, or a sequence of such lines.

Hasse diagram of polynomial models	Algorithm for model fitting
 4 cubic polynomial 3 quadratic polynomial 2 straight line Warning: the best-fitting quadratic polynomial is not usually obtained by taking the best-fitting cubic polynomial and 1 constant removing the term in x³. 	 Start at the top of the Hasse diagram. At point V, Choose a unused downwards edge. Suppose that the point at the bottom of the edge is W. Perform a test of the hypothesis that P_V(E(Y)) – P_W(E(Y)) = 0, using the residual mean square in the appropriate stratum. If the hypothesis is not rejected then conclude that E(Y) is close enough to W for our purposes; do not change the residual mean square; anove down to point W, and repeat from Step 2. Otherwise, return to Step 2.1, if possible. If there are no unused downwards edges from V then report that the model cannot be simplified from V; and if there is more than one edge downwards from V, then the fitted model is additive in some smaller models, so it is equivalent (and helpful) to report the vectors of fitted values for the endpoints of all these edges; so it is equivalent residual mean squares to report standard errors of differences between these fitted values; so so for the rends between these fitted values;

What about orthogonality?	Example with two treatment factors: feeding chickens
Vector subspaces V_1 and V_2 are geometrically orthogonal to each other if $V_1 \cap (V_1 \cap V_2)^{\perp}$ is orthogonal to $V_2 \cap (V_1 \cap V_2)^{\perp}$. If every pair of subspaces in our model collection is geometrically orthogonal, then all routes from the top of the Hasse diagram to the bottom will give the same result. Otherwise, different routes can give different conclusions for some data vectors.	Four diets for feeding newly-hatched chickens were compared. The diets consisted of all levels of Protein (groundnuts or soya bean) with two levels of Fishmeal (added or not). Each diet was fed to two chickens, and they were weighed at the end of six weeks.

bset of data from Carpe	enter and	Duc	kworth, 19	941)	Suppose that V_1 and V_2 are expectation subspaces, with $V_1 < V_2$, and an edge joining V_1 to V_2 .
Source	SS	df	MS	VR	The mean square for
Protein	4704.5	1	4704.50	35.57	the extra fit in V_2 compared to the fit in V_1 is
Fishmeal	3120.5	1	3120.50	23.60	- 1 -
Protein \land Fishmeal	128.0	1	128.00	0.97	SS(fitted values in V_2) – SS(fitted values in V_1)
residual	529.0	4	132.25		$\dim(V_2) - \dim(V_1)$
t know how to interpret the scientists who did th				w to?	Scale the Hasse diagram so that each edge has length proportional to the relevant mean square, and show the residual mean square to give a scale.

19/39

20/39

Vetch: Hasse diagram of models	Vetch: scaled Hasse diagram of models
 9 fields and mixtures 6 fields and linear function of % vetch 5 fields 	$\begin{array}{c} 9\\ 6\\ \hline\\ & V_{\text{fields}}+V_{\text{mixtures}}\\ & V_{\text{fields}}+V_{\text{linear vetch}}\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

A (compara	tively simple) biodi	ver	sity	exp	erir	nen	Expectation subspaces for biodiversity experiment			
	<i>E</i> , <i>F</i> —size types of fres imps in a jar with strea						$\mathbb{E}(\mathbf{Y}) \in V_{U} \iff \text{there is a constant } \mu \text{ such that}$			
	ow much leaf litter is e						$\mathbb{E}(Y_{\omega}) = \mu \text{ for all } \omega.$			
Experime	Experimental unit $=$ jar.								$\mathbb{E}(\mathbf{Y}) \in V_R \iff \text{ there are constants } \alpha_j \text{ such that} \\ \mathbb{E}(Y_\omega) = \alpha_j \text{ whenever } R(\omega) = j.$	
Т	Treatment	R	x1	<i>x</i> 2	х3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	$\mathbb{E}(\mathbf{Y}) \in V_S \iff$ there are constants β_i such that	
1 A	12 of type A	1	12	0	0	0	0	0	$\mathbb{T}(\mathcal{Y}_{c}) = \sum_{i=1}^{6} a_{i}(i)$	
:		:							$\mathbb{E}(Y_{\omega}) = \sum_{i=1}^{o} \beta_{i} x_{i}(\omega).$	l
6 F	12 of type F	1	0	0	0	0	0	12	6	
7 AB	6 of <i>A</i> , 6 of <i>B</i>	2	6	6	0	0	0	0	$\mathbb{E}(\mathbf{Y}) \in V_R + V_S \Longleftrightarrow \mathbb{E}(Y_\omega) = \alpha_{R(\omega)} + \sum_{i=1}^{\omega} \beta_i x_i(\omega).$	
:		÷							1=1	
21 EF	6 of <i>E</i> , 6 of <i>F</i>	2	0	0	0	0	6	6	$\mathbb{E}(\mathbf{Y}) \in V_{R*S} \iff$ there are constants γ_{ij} such that	l
22 ABC	2 4 of <i>A</i> , 4 of <i>B</i> , 4 of <i>C</i>	3	4	4	4	0	0	0	$\mathbb{E}(\mathcal{V}) = \sum_{i=1}^{6} e_{i} + e_{i}(e_{i})$	
:		:							$\mathbb{E}(Y_{\omega}) = \sum_{i=1}^{6} \gamma_{i,R(\omega)} x_i(\omega).$	
41 DEF	4 of <i>D</i> , 4 of <i>E</i> , 4 of <i>F</i>	3	0	0	0	4	4	4	$\mathbb{E}(\mathbf{Y}) \in V_T \iff \mathbb{E}(Y_\omega) = \delta_{T(\omega)}.$	
									9	30/39

Hasse diagram for mode	l subspaces (biodiversity)	Success!				
41 \blacksquare V_T	full model					
18 ■ V _{R*S}	each shrimp rate depends on richness	Are assisted and multiplicated				
$8 \square V_R + V_S$	additive model	An ecology journal published the Hasse diagram of the family of models 				
$V_R \bullet 3 \qquad 6 \bullet V_S$	only richness makes any difference each shrimp has its own rate	 the statement that each row of an ANOVA table is for a difference between models. 				
$1 \blacksquare V_{U}$	null model					
$R + (x1 + \dots + x6) + R:($ Does your software intern (Thanks to Justin Thong.)	pret this correctly?					
L	31/39		32/39			

Analysis of Variance	(AN	IOVA) ta	ble		What the data showed: mean squares
Source Richness Shrimp Richness * Shrimp Treatment Block Error Total Each row in the ANG difference between a See Fig. 1 for how th Verbatim from Journ	large e mo	er model ar dels are rel	nd the next ated.		Treatment Richness * Shrimp Richness + Shrimp Shrimp Conclusions: The model Richness does not explain the data. The model Shrimp explains the data well. There is no evidence that any larger model does any better. Two experiments, with two responses each, all led to similar conclusions. Scale: 3 × residual mean square 3 × residual mean square
				33	Richness Constant 34/

Using (scaled) Hasse diagrams

I have found that non-mathematicians find

- Hasse diagrams easier to interpret than equations with side conditions,
- and scaled Hasse diagrams easier to interpret than anova tables,

especially for complicated families of models.

These diagrams can be extended to deal with

- non-orthogonal models (edges that used to have the same length can now have different lengths),
- and situations with more than one residual mean square (use different colours for the corresponding edges).

Factorial treatments plus control: unscaled, scaled

Nicolas Ballarini at Medizinische Universität Wien is developing an R shiny app to draw both the unscaled and scaled version of the Hasse diagram, showing various useful information.

Summary

- Stop pretending that the expectation part of the linear model is a single model with side conditions on its parameters, and recognize that it is, almost always, a family of possible models to describe the expectation.
- Recognize the relationships between the different expectation models being considered, and show these on a Hasse diagram.
- After the data are collected, scale the lengths of the edges of the Hasse diagram to show the relevant mean squares, as a visual summary of the analysis of variance.
- Use the Hasse diagram, recursively from the top, to analyse the data and fit a model.

Software