Circular designs balanced for neighbours at distances one and two

R. A. Bailey
University of St Andrews / QMUL (emerita)

London Mathematical Society Regional Meeting, Plymouth, 17 December 2014

Joint work with Tank Aldred (University of Otago, New
Zealand), Brendan McKay (ANU, Australia) and Ian Wanless (Monash University, Australia)

Outline

- Some general considerations in the design and analysis of experiments where there may be an effect of neighbouring treatments.

Outline

- Some general considerations in the design and analysis of experiments where there may be an effect of neighbouring treatments.
- The original problem, and first steps towards its solution.

Outline

- Some general considerations in the design and analysis of experiments where there may be an effect of neighbouring treatments.
- The original problem, and first steps towards its solution.
- Two variants on the original problem, and their complete solution.

Outline

- Some general considerations in the design and analysis of experiments where there may be an effect of neighbouring treatments.
- The original problem, and first steps towards its solution.
- Two variants on the original problem, and their complete solution.
- What can we say about the original problem?

An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced, agricultural research stations wanted to do experiments to compare the new varieties with the old.

An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced, agricultural research stations wanted to do experiments to compare the new varieties with the old.

Problem: If we grow each variety in a separate field, then any perceived differences may be caused by differences in fertility between the fields.

An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced, agricultural research stations wanted to do experiments to compare the new varieties with the old.

Problem: If we grow each variety in a separate field, then any perceived differences may be caused by differences in fertility between the fields.

Problem: If we grow the varieties mixed up in the same field, with several plots per variety, then each tall variety may shade the variety growing on the plot to its immediate North.

An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced, agricultural research stations wanted to do experiments to compare the new varieties with the old.
Problem: If we grow each variety in a separate field, then any perceived differences may be caused by differences in fertility between the fields.

Problem: If we grow the varieties mixed up in the same field, with several plots per variety, then each tall variety may shade the variety growing on the plot to its immediate North.
Solution: Use a neighbour-balanced design in which each ordered pair (i, j) of different varieties occurs the same number of times as (South, North) neighbours.

Two designs for four varieties of sunflower

The Southern row consists of treated border plots on which no response is measured.

Each variety has each variety (including itself) just once as a Southern neighbour.

A	B	C	D
D	A	B	C
B	C	D	A
C	D	A	B
X	X	X	X

The Southern row is simply whatever is at the edge of the field.

Each variety has other each variety, and the field edge, just once as a Southern neighbour.

An experiment on control of aphids

Entomologists wanted to compare several sprays to deter aphids from the crop without killing them. The sprays should be applied to a square array of rectangular plots in a single field, using a Latin square (each spray occurs on one plot per row and one plot per column).

An experiment on control of aphids

Entomologists wanted to compare several sprays to deter aphids from the crop without killing them. The sprays should be applied to a square array of rectangular plots in a single field, using a Latin square (each spray occurs on one plot per row and one plot per column).

Problem: If one spray is effective, it may actually increase the number of aphids on neighbouring plots.
The aphids are as likely to spread East as West, so direction in one dimension is not an issue, but the North-South effect may be different from the East-West one, because the plots are not square.

An experiment on control of aphids

Entomologists wanted to compare several sprays to deter aphids from the crop without killing them. The sprays should be applied to a square array of rectangular plots in a single field, using a Latin square (each spray occurs on one plot per row and one plot per column).

Problem: If one spray is effective, it may actually increase the number of aphids on neighbouring plots.
The aphids are as likely to spread East as West, so direction in one dimension is not an issue, but the North-South effect may be different from the East-West one, because the plots are not square.
Solution: Use a quasi-complete Latin square, in which each unordered pair $\{i, j\}$ of sprays occurs the same number of times as neighbours within rows and the same number of times as neighbours within columns.

Five sprays on aphids

P	X	D	G	M
X	G	P	M	D
D	P	M	X	G
G	M	X	D	P
M	D	G	P	X

Five sprays on aphids

P	X	D	G	M
X	G	P	M	D
D	P	M	X	G
G	M	X	D	P
M	D	G	P	X

Each pair of different treatments occurs twice as row neighbours and twice as column neighbours.

Unequal replication (X denotes 'control')

X	P	D	M	G	X
M	X	P	G	X	D
D	G	M	P	X	X
G	D	X	X	M	P
X	M	X	D	P	G
P	X	G	X	D	M

Unequal replication (X denotes 'control')

X	P	D	M	G	X
M	X	P	G	X	D
D	G	M	P	X	X
G	D	X	X	M	P
X	M	X	D	P	G
P	X	G	X	D	M

The experiment at Rothamsted on control of aphids

The experiment at Rothamsted on control of aphids

The following year, many Rothamsted scientists used this design.
I had to beg them to come back to me to let me adapt it to their number of treatments.

Some issues in neighbour designs

- Border plots or not?

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not?

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not?

Necessary if direct effects are to be orthogonal to neighbour effects, but usually impossible if direct effects are to be orthogonal to blocks.

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not? Necessary if direct effects are to be orthogonal to neighbour effects, but usually impossible if direct effects are to be orthogonal to blocks.
- One or two dimensions?

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not? Necessary if direct effects are to be orthogonal to neighbour effects, but usually impossible if direct effects are to be orthogonal to blocks.
- One or two dimensions?
- Neighbour effects in one or both directions in each dimension?

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not? Necessary if direct effects are to be orthogonal to neighbour effects, but usually impossible if direct effects are to be orthogonal to blocks.
- One or two dimensions?
- Neighbour effects in one or both directions in each dimension?
- Left-neighbour effects the same as right-neighbour effects?

Some issues in neighbour designs

- Border plots or not?

Usual in forestry experiments, but in other contexts it may seem wasteful to have treated plots that are not measured.

- Self-neighbours or not? Necessary if direct effects are to be orthogonal to neighbour effects, but usually impossible if direct effects are to be orthogonal to blocks.
- One or two dimensions?
- Neighbour effects in one or both directions in each dimension?
- Left-neighbour effects the same as right-neighbour effects?
- Equal replication or not?

Data analysis: what do we want to do?

- We might want to estimate just the direct effects (for example, tasting coffee):

Data analysis: what do we want to do?

- We might want to estimate just the direct effects (for example, tasting coffee): if we use a neighbour-balanced design and fit neighbour effects then we remove bias but this reduces error degrees of freedom and so may reduce power.

Data analysis: what do we want to do?

- We might want to estimate just the direct effects (for example, tasting coffee): if we use a neighbour-balanced design and fit neighbour effects then we remove bias but this reduces error degrees of freedom and so may reduce power.
Do we want to test the hypothesis that all the brands of coffee taste the same (in which case we need power) or do we want to estimate how much better (on some scale) coffee A tastes than coffee B (in which case we want zero bias and small true variance)?

Data analysis: what do we want to do?

- We might want to estimate just the direct effects (for example, tasting coffee): if we use a neighbour-balanced design and fit neighbour effects then we remove bias but this reduces error degrees of freedom and so may reduce power.
Do we want to test the hypothesis that all the brands of coffee taste the same (in which case we need power) or do we want to estimate how much better (on some scale) coffee A tastes than coffee B (in which case we want zero bias and small true variance)?
Some people, in some applications, recommend using a neighbour-balanced design to reduce bias but fitting only the direct effects.

Data analysis: what do we want to estimate?

- We might want to estimate just the total effects (for example, what happens when the farmer uses only the short variety?):

Data analysis: what do we want to estimate?

- We might want to estimate just the total effects (for example, what happens when the farmer uses only the short variety?):
there is a trade-off between having runs of the same treatment and avoiding confounding treatments with blocks.

Data analysis: what do we want to estimate?

- We might want to estimate just the total effects (for example, what happens when the farmer uses only the short variety?):
there is a trade-off between having runs of the same treatment and avoiding confounding treatments with blocks.
- We might want to estimate both direct and neighbour effects (for example, to make predictions about mixed plantings in future):

Data analysis: what do we want to estimate?

- We might want to estimate just the total effects (for example, what happens when the farmer uses only the short variety?):
there is a trade-off between having runs of the same treatment and avoiding confounding treatments with blocks.
- We might want to estimate both direct and neighbour effects
(for example, to make predictions about mixed plantings in future):
now we need balance (or orthogonality) between different types of neighbour effects as well as between these and direct effects.

Data analysis: what do we want to estimate?

- We might want to estimate just the total effects (for example, what happens when the farmer uses only the short variety?):
there is a trade-off between having runs of the same treatment and avoiding confounding treatments with blocks.
- We might want to estimate both direct and neighbour effects
(for example, to make predictions about mixed plantings in future):
now we need balance (or orthogonality) between different types of neighbour effects as well as between these and direct effects.
In particular, if there are effects of neighbours from both the left and the right, then we need some sort of combinatorial balance at distance two even if the effects are felt only at distance one.

An experiment in marine biology

Richard Cormack (St Andrews) posed me this question in 1993.
A marine biologist wanted to compare 5 genotypes of bryozoan by suspending them in sea water around the circumference of a cylindrical tank. Each genotype was replicated 5 times, so that altogether 25 items were suspended in the tank.

An experiment in marine biology

Richard Cormack (St Andrews) posed me this question in 1993.
A marine biologist wanted to compare 5 genotypes of bryozoan by suspending them in sea water around the circumference of a cylindrical tank. Each genotype was replicated 5 times, so that altogether 25 items were suspended in the tank.
The marine biologist required that
(i) each ordered pair of items should occur just once as ordered neighbours around the circumference of the tank;
(ii) each ordered pair of items should occur just once with a single item in between them, in order.

A circular design for 5 treatments with neighbour balance at distances one and two

A circular design for 5 treatments with neighbour balance at distances one and two

A circular design for 5 treatments with neighbour balance at distances one and two

A circular design for 5 treatments with neighbour balance at distances one and two

The lazy way to write the design

$$
\begin{aligned}
& \text { (1 1 3 4 } 4300010222033121440442324) \\
& 2 \begin{array}{lllll}
& 4 & 1 & 1 & 3
\end{array} \\
& 3 \quad 4 \\
& 2 \text { 3 } \\
& 4 \\
& 4 \text { 0 } \\
& \begin{array}{cc}
0 & 1 \\
4 & 0
\end{array} \\
& 1 \\
& 2 \\
& 2 \\
& 2 \\
& \begin{array}{llll}
1 & 3 & 3 & 0
\end{array}
\end{aligned}
$$

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\rho_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\rho_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.
The direct treatment effects δ, the left neighbour effects λ and the right neighbour effects ρ

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\rho_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.
The direct treatment effects δ, the left neighbour effects λ and the right neighbour effects ρ can be estimated orthogonally of each other in a experiment of this size

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\rho_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.
The direct treatment effects δ, the left neighbour effects λ and the right neighbour effects ρ can be estimated orthogonally of each other in a experiment of this size if and only if each pair $\left(\lambda_{j}, \delta_{k}\right)$ occurs equally often and each pair $\left(\delta_{j}, \rho_{k}\right)$ occurs equally often and each pair $\left(\lambda_{j}, \rho_{k}\right)$ occurs equally often;

Statistical model

Denote by $\tau(i)$ the treatment on plot i.
Denote by Y_{i} the response on plot i.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\rho_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

The direct treatment effects δ, the left neighbour effects λ and the right neighbour effects ρ can be estimated orthogonally of each other in a experiment of this size if and only if each pair $\left(\lambda_{j}, \delta_{k}\right)$ occurs equally often and each pair $\left(\delta_{j}, \rho_{k}\right)$ occurs equally often and each pair $\left(\lambda_{j}, \rho_{k}\right)$ occurs equally often; in other words, the design has neighbour balance at distances one and two.

Generalize the original problem

I wanted to prepare myself for future design requests like this.
Can we construct such a neighbour-balanced design for n treatments each replicated n times
around a circle with space for n^{2} items?

Those conditions again

Among the triples of the form

$$
(\tau(i-1), \tau(i), \tau(i+1))
$$

each ordered pair of treatments occurs once in positions 1 and 2 , once in positions 1 and 3 , and once in positions 2 and 3.

Those conditions again

Among the triples of the form

$$
(\tau(i-1), \tau(i), \tau(i+1))
$$

each ordered pair of treatments occurs once in positions 1 and 2 , once in positions 1 and 3 , and once in positions 2 and 3.
Among the triples of the form
(row, column, letter),
each ordered pair of symbols occurs once in positions 1 and 2, once in positions 1 and 3 , and once in positions 2 and 3.

Those conditions again

Among the triples of the form

$$
(\tau(i-1), \tau(i), \tau(i+1))
$$

each ordered pair of treatments occurs once in positions
1 and 2 , once in positions 1 and 3 , and once in positions 2 and 3.
Among the triples of the form
(row, column, letter),
each ordered pair of symbols occurs once in positions 1 and 2, once in positions 1 and 3 , and once in positions 2 and 3.
These are conditions for a Latin square whose rows and columns have the same labels as the letters -a quasigroup.

Building the design from a quasigroup (Latin square)

The quasigroup operation \circ is defined by
$a \circ b=$ letter in row a and column b of the Latin square.

Building the design from a quasigroup (Latin square)

The quasigroup operation \circ is defined by

$$
a \circ b=\text { letter in row } a \text { and column } b \text { of the Latin square. }
$$

In the circular design, each triple should have the form

$$
(a, b, a \circ b) .
$$

Building the design from a quasigroup (Latin square)

The quasigroup operation \circ is defined by

$$
a \circ b=\text { letter in row } a \text { and column } b \text { of the Latin square. }
$$

In the circular design, each triple should have the form

$$
(a, b, a \circ b) .
$$

We can start with any ordered pair (x, y) and successively build the circular design from the quasigroup as

$$
x \quad y \quad x \circ y \quad y \circ(x \circ y) \quad(x \circ y) \circ(y \circ(x \circ y)) \quad \cdots
$$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

(A A

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

(A A

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{lll}A & A & B\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{lll}A & A & B\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{llll}A & A & B & A\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{llll}A & A & B & A\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{lllll}A & A & B & A & C\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{lllll}A & A & B & A & C\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{llllll}A & A & B & A & C & D\end{array}\right.$

Latin square to circle

$$
\begin{array}{ccc|cccc}
& & \circ & A & B & C & D \\
\hline & & A & B & A & D & C \\
& B & C & D & A & B \\
& & C & D & C & B & A \\
& & D & A & B & C & D \\
& A & A & B & A & C & D
\end{array}
$$

Latin square to circle

$$
\begin{array}{ccc|cccc}
& & \circ & A & B & C & D \\
\hline & & A & B & A & D & C \\
& B & C & D & A & B \\
& & C & D & C & B & A \\
& & D & A & B & C & D \\
& A & A & A & C & D & A
\end{array}
$$

Latin square to circle

$$
\begin{aligned}
& \begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array} \\
& \left(\begin{array}{lllllll}
A & A & B & A & C & D & A
\end{array}\right.
\end{aligned}
$$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$\left(\begin{array}{lllllllll}A & A & B & A & C & D & A & A & \text { oops! }\end{array}\right.$

Latin square to circle

$$
\begin{array}{c|cccc}
\circ & A & B & C & D \\
\hline A & B & A & D & C \\
B & C & D & A & B \\
C & D & C & B & A \\
D & A & B & C & D
\end{array}
$$

$$
\left(\begin{array}{lllllllll}
A & A & B & A & C & D & A & A & \text { oops! }
\end{array}\right.
$$

This quasigroup gives a design with four separate circles, not one.

$$
\left.\begin{array}{c}
\left(\begin{array}{llllll}
A & A & B & A & C & D
\end{array}\right) \\
\left(\begin{array}{cccccc}
A & D & C & C & B & C
\end{array}\right) \\
\left(\begin{array}{llll}
B & B & D
\end{array}\right) \\
(D
\end{array}\right)
$$

Eulerian quasigroups

Let's call a quasigroup Eulerian if it gives a single large circle: that is, a sequence with maximal period.

Eulerian quasigroups

Let's call a quasigroup Eulerian if it gives a single large circle: that is, a sequence with maximal period.

	0	1	2	3	4
0	1	0	2	3	4
1	2	3	1	4	0
2	3	4	0	2	1
3	0	2	4	1	3
4	4	1	3	0	2

Eulerian quasigroups

Let's call a quasigroup Eulerian if it gives a single large circle: that is, a sequence with maximal period.

	0	1	2	3	4
0	1	0	2	3	4
1	2	3	1	4	0
2	3	4	0	2	1
3	0	2	4	1	3
4	4	1	3	0	2

$\left(\begin{array}{lllllllllllllllllllllllll}1 & 1 & 3 & 4 & 3 & 0 & 0 & 1 & 0 & 2 & 2 & 0 & 3 & 3 & 1 & 2 & 1 & 4 & 0 & 4 & 4 & 2 & 3 & 2 & 4\end{array}\right)$

Do Eulerian quasigroups of order n exist?

If $n \leq 4$, a manual check shows that there are none.

Do Eulerian quasigroups of order n exist?

If $n \leq 4$, a manual check shows that there are none.
For $n=5$, we have shown an example.

Do Eulerian quasigroups of order n exist?

If $n \leq 4$, a manual check shows that there are none.
For $n=5$, we have shown an example.
For every other value of n that we have tried, we have found an Eulerian quasigroup by computer search; and we can prove that existence for coprime n and m implies existence for $m n$;
BUT we have been unable to prove that they always exist.

Do Eulerian quasigroups of order n exist?

If $n \leq 4$, a manual check shows that there are none.
For $n=5$, we have shown an example.
For every other value of n that we have tried, we have found an Eulerian quasigroup by computer search; and we can prove that existence for coprime n and m implies existence for $m n$;
BUT we have been unable to prove that they always exist.
It is quite easy to show that, if $Q=\mathbb{Z}_{p^{s}}$ or $Q=\mathrm{GF}\left(p^{s}\right)$, then no binary operation of the form

$$
x \circ y=a x+b y+c
$$

makes Q into an Eulerian quasigroup.

Some history

After Richard Cormack posed me the question, Nick Cavenagh (then a PhD student at QMUL, now head of the Department of Mathematics at the University of Waikato) and I got this far, and then got stuck.

Some history

After Richard Cormack posed me the question, Nick Cavenagh (then a PhD student at QMUL, now head of the Department of Mathematics at the University of Waikato) and I got this far, and then got stuck.

In July 1999 I posed the question in the Problem Session at the British Combinatorial Conference in the University of Kent.

Some history

After Richard Cormack posed me the question, Nick Cavenagh (then a PhD student at QMUL, now head of the Department of Mathematics at the University of Waikato) and I got this far, and then got stuck.

In July 1999 I posed the question in the Problem Session at the British Combinatorial Conference in the University of Kent.

Brendan McKay (Computer Science, Australian National University) became interested, and worked on the question with Ian Wanless (then his PhD student, now in the School of Mathematical Sciences at Monash University) and Tank Aldred (Department of Mathematics and Statistics, University of Otago). They invented two variants of the question.

Some history

After Richard Cormack posed me the question, Nick Cavenagh (then a PhD student at QMUL, now head of the Department of Mathematics at the University of Waikato) and I got this far, and then got stuck.
In July 1999 I posed the question in the Problem Session at the British Combinatorial Conference in the University of Kent.
Brendan McKay (Computer Science, Australian National University) became interested, and worked on the question with Ian Wanless (then his PhD student, now in the School of Mathematical Sciences at Monash University) and Tank Aldred (Department of Mathematics and Statistics, University of Otago). They invented two variants of the question.
In September 2004 I spent two weeks at ANU working with BDM and IMW (and remotely with RELA). We solved the two variants completely.

Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on neighbouring plots.

Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on neighbouring plots.
We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with all but one of the right-neighbour treatments.

Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on neighbouring plots.
We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with all but one of the right-neighbour treatments.
The incidence of direct treatments with left-neighbour treatments is a symmetric balanced incomplete-block design (BIBD, aka 2-design);

Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on neighbouring plots.
We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with all but one of the right-neighbour treatments.
The incidence of direct treatments with left-neighbour treatments is a symmetric balanced incomplete-block design (BIBD, aka 2-design); direct treatments with right-neighbour treatments is a symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a symmetric BIBD.

Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on neighbouring plots.
We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with all but one of the right-neighbour treatments.
The incidence of direct treatments with left-neighbour treatments is a symmetric balanced incomplete-block design (BIBD, aka 2-design); direct treatments with right-neighbour treatments is a symmetric BIBD; left-neighbour treatments with right-neighbour treatments is a symmetric BIBD.
Preece (1976) showed that, for overall balance, the missing pairs at distance two must also be the self-pairs.

Idempotent Eulerian circular sequences

We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with every right-neighbour treatment except itself.

Idempotent Eulerian circular sequences

We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with every right-neighbour treatment except itself.

The results of Druilhet (1999) show that such designs are optimal for the estimation of direct effects and neighbour effects, in the sense of minimizing average variance of these estimators.

Idempotent Eulerian circular sequences

We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with every right-neighbour treatment except itself.

The results of Druilhet (1999) show that such designs are optimal for the estimation of direct effects and neighbour effects, in the sense of minimizing average variance of these estimators.

A quasigroup is idempotent if $x \circ x=x$ for all x.

Idempotent Eulerian circular sequences

We need a circular design with $n(n-1)$ plots in which each

- each ordered pair of distinct treatments occurs just once as ordered neighbours;
- each left-neighbour treatment occurs just once with every right-neighbour treatment except itself.

The results of Druilhet (1999) show that such designs are optimal for the estimation of direct effects and neighbour effects, in the sense of minimizing average variance of these estimators.

A quasigroup is idempotent if $x \circ x=x$ for all x.
Our circular design is equivalent to an idempotent quasigroup in which the $n(n-1)$ off-diagonal cells give a single circle.

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞. sequence $\quad[4,3,1,2]$ all different, non-zero

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞. $\begin{array}{lcl}\text { sequence } & {[4,3,1,2]} & \text { all different, non-zero } \\ \text { neighbour sums } & {[2,4,3]} & \text { all different, non-zero, non-1 }\end{array}$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$(\infty 04230$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$(\infty 04230 \infty 10341$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$(\infty 04230 \infty 10341 \infty 21402$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$(\infty 04230 \infty 10341 \infty 21402 \infty 32013$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$$
(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)
$$

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$$
(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)
$$

Neighbours of ∞ at distances one and two are OK, by cyclic construction.

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$$
(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)
$$

Neighbours of ∞ at distances one and two are OK, by cyclic construction.
Differences at distance one come from the original sequence; most differences at distance two are the neighbour sums.

Construction when $n=6$ (in general, when n is even)

The treatments are the integers modulo 5 , together with ∞.

sequence	$[4,3,1,2]$	all different, non-zero
neighbour sums	$[2,4,3]$	all different, non-zero, non-1
sum of ends	1	must be 1
cumulative sums	$[0,4,2,3,0]$	last must be 0

$$
(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)
$$

Neighbours of ∞ at distances one and two are OK, by cyclic construction.
Differences at distance one come from the original sequence; most differences at distance two are the neighbour sums.
1 - last cumulative sum $=1-0=1=$ missing neighbour-sum so differences at distance two either side of ∞ give this.

A circular design for 6 treatments with no self-neighbours at distance one or two

$(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)$

A circular design for 6 treatments with no self-neighbours at distance one or two

$(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)$

A circular design for 6 treatments with no self-neighbours at distance one or two

$(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)$

A circular design for 6 treatments with no self-neighbours at distance one or two

$(\infty 04230 \infty 10341 \infty 21402 \infty 32013 \infty 43124)$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞. sequence $\quad[4,1,2,5,3]$ all different, non-zero

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞. $\begin{array}{lcl}\text { sequence } & {[4,1,2,5,3]} & \text { all different, non-zero } \\ \text { neighbour sums } & {[5,3,1,2]} & \text { all different, non-zero, non-4 }\end{array}$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty \quad 045103$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty 045103 \infty 150214$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty 045103 \infty 150214 \infty 201325$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty 0045103 \infty 150214 \infty 201325$
$\ldots \infty 312430$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty 0045103 \infty 150214 \infty 201325$
$\ldots \infty 312430 \infty 423541$

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty \quad 045103 \infty 150214 \infty 201325$
$\ldots \infty 312430 \infty 423541 \infty 534052$)

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.
sequence
neighbour sums
sum of ends cumulative sums
$(\infty \quad 045103 \infty 150214 \infty 2101325$
$\ldots \infty 312430 \infty 423541 \infty 534052$)
Neighbours of ∞ at distances one and two are OK, by cyclic construction.

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty \quad 045103 \infty 150214 \infty 2101325$
$\ldots \infty 312430 \infty 423541 \infty 534052$)
Neighbours of ∞ at distances one and two are OK, by cyclic construction.
Differences at distance one come from the original sequence; most differences at distance two are the neighbour sums.

Construction when $n=7$ (in general, when n is odd)

The treatments are the integers modulo 6 , together with ∞.

sequence	$[4,1,2,5,3]$	all different, non-zero
neighbour sums	$[5,3,1,2]$	all different, non-zero, non-4
sum of ends	1	must be 1
cumulative sums	$[0,4,5,1,0,3]$	last must be 3

$(\infty 0445103 \infty 150214 \infty 201325$
$\ldots \infty 312430 \infty 423541 \infty 534052$)
Neighbours of ∞ at distances one and two are OK, by cyclic construction.
Differences at distance one come from the original sequence; most differences at distance two are the neighbour sums.
1 - last cumulative sum $=1-3=4=$ missing neighbour-sum so differences at distance two either side of ∞ give this.

Solution for variant I

Theorem
Given an initial sequence of the non-zero integers modulo $n-1$ satisfying those conditions,
that construction always produces an idempotent Eulerian circular sequence.

Theorem
Such an initial sequence can be constructed whenever $n \geq 6$.

Paradigm

algorithm
 Large thing

Paradigm

Small thing \longrightarrow Large thing good

Paradigm

Small thing beautiful
 Large thing good

Paradigm

beautiful good

Theorem
If small is beautiful then large is good.

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.
- Find the appropriate definition of 'beautiful'.

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.
- Find the appropriate definition of 'beautiful'.
- Prove the theorem.

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.
- Find the appropriate definition of 'beautiful'.
- Prove the theorem.

Theorem
I can construct a small beautiful thing for almost all values of n.

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.
- Find the appropriate definition of 'beautiful'.
- Prove the theorem.

Theorem
I can construct a small beautiful thing for almost all values of n.

- Find a construction (which may differ for different residues modulo something).

Paradigm

Theorem
If small is beautiful then large is good.

- Work out the algorithm.
- Find the appropriate definition of 'beautiful'.
- Prove the theorem.

Theorem
I can construct a small beautiful thing for almost all values of n.

- Find a construction (which may differ for different residues modulo something).
- Prove that it works.

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\lambda_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\lambda_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Can we arrange that every treatment have every treatment as neighbour just once, on one side or the other?

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\lambda_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Can we arrange that every treatment have every treatment as neighbour just once, on one side or the other?
A self-pair gives a self-neighbour on both sides, so we must ban self-pairs. So we need a circle of $n(n-1) / 2$ plots.

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\lambda_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Can we arrange that every treatment have every treatment as neighbour just once, on one side or the other?
A self-pair gives a self-neighbour on both sides, so we must ban self-pairs. So we need a circle of $n(n-1) / 2$ plots.
Each plot has two neighbours, so each treatment has an even number of neighbours, so $n-1$ must be even.

Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the same whether it is from the left or the right.

$$
Y_{i}=\lambda_{\tau(i-1)}+\delta_{\tau(i)}+\lambda_{\tau(i+1)}+\varepsilon_{i}
$$

where the ε_{i} are independent random variables with mean 0 and common variance σ^{2}.

Can we arrange that every treatment have every treatment as neighbour just once, on one side or the other?
A self-pair gives a self-neighbour on both sides, so we must ban self-pairs. So we need a circle of $n(n-1) / 2$ plots.
Each plot has two neighbours, so each treatment has an even number of neighbours, so $n-1$ must be even.

Any triple (a, b, a) gives b as a neighbour of a on both sides, so there can be no such triples.

Construction when $n=9$

The treatments are the integers modulo 9.

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence $\quad(1,2,5,3) \quad \pm$ entries are all different

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence $\quad(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums $(3,7,8,4) \quad \pm$ entries are all different

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums
cumulative sums
$(3,7,8,4) \quad \pm$ entries are all different
$[1,3,8,2] \quad$ last one is coprime to 9

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums
cumulative sums
$(3,7,8,4) \quad \pm$ entries are all different
$[1,3,8,2] \quad$ last one is coprime to 9
(1382

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums
cumulative sums
$(3,7,8,4) \quad \pm$ entries are all different
$[1,3,8,2] \quad$ last one is coprime to 9
(13823514

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums
cumulative sums
$(3,7,8,4) \quad \pm$ entries are all different
$[1,3,8,2] \quad$ last one is coprime to 9
(138235145736

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums
cumulative sums
$(3,7,8,4) \quad \pm$ entries are all different
$[1,3,8,2] \quad$ last one is coprime to 9
(1382351457367058

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence $\quad(1,2,5,3) \quad \pm$ entries are all different circular neighbour sums $(3,7,8,4) \quad \pm$ entries are all different cumulative sums $\quad[1,3,8,2] \quad$ last one is coprime to 9
(13823514573670580271

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence $\quad(1,2,5,3) \quad \pm$ entries are all different circular neighbour sums $\quad(3,7,8,4) \quad \pm$ entries are all different cumulative sums $\quad[1,3,8,2] \quad$ last one is coprime to 9
(138235145736705802712403

Construction when $n=9$

The treatments are the integers modulo 9.

circular sequence	$(1,2,5,3)$	\pm entries are all different
circular neighbour sums	$(3,7,8,4)$	\pm entries are all different
cumulative sums	$[1,3,8,2]$	last one is coprime to 9

(1382351457367058027124034625

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence $\quad(1,2,5,3) \quad \pm$ entries are all different circular neighbour sums $\quad(3,7,8,4) \quad \pm$ entries are all different cumulative sums $\quad[1,3,8,2] \quad$ last one is coprime to 9
(13823514573670580271240346256847

Construction when $n=9$

The treatments are the integers modulo 9.
circular sequence
$(1,2,5,3) \quad \pm$ entries are all different
circular neighbour sums $(3,7,8,4) \quad \pm$ entries are all different
cumulative sums
[$1,3,8,2$] last one is coprime to 9
$(138235145736705802712403462568478160$)

Construction when $n=9$

The treatments are the integers modulo 9.

circular sequence	$(1,2,5,3)$	\pm entries are all different
circular neighbour sums	$(3,7,8,4)$	\pm entries are all different
cumulative sums	$[1,3,8,2]$	last one is coprime to 9

$(138235145736705802712403462568478160)$

We keep adding 2 to the original sequence of length 4 .
Because 2 is coprime to 9 , every pair in the original sequence gets all its shifts modulo 9 .

Construction when $n=9$

The treatments are the integers modulo 9.

circular sequence	$(1,2,5,3)$	\pm entries are all different
circular neighbour sums	$(3,7,8,4)$	\pm entries are all different
cumulative sums	$[1,3,8,2]$	last one is coprime to 9

$(138235145736705802712403462568478160)$

We keep adding 2 to the original sequence of length 4 .
Because 2 is coprime to 9 , every pair in the original sequence gets all its shifts modulo 9.
Differences at distance one come from the original sequence; difference at distance two are the neighbour sums.

A circular design for 9 treatments with undirectional neighbour balance at distances one and two

(138235145736705802712403462568478160)

A circular design for 9 treatments with undirectional neighbour balance at distances one and two

(138235145736705802712403462568478160)

A circular design for 9 treatments with undirectional neighbour balance at distances one and two

(138235145736705802712403462568478160)

A circular design for 9 treatments with undirectional neighbour balance at distances one and two

(138235145736705802712403462568478160)

Solution for variant II

Theorem
Given an initial circular sequence of $(n-1) / 2$ of the integers modulo n satisfying those conditions, that construction always produces a circular sequence balanced for undirected neighbours at distances one and two.

Theorem
Such an initial sequence can be constructed whenever n is odd and $n \geq 9$. There is also such a circular sequence when $n=7$.

Back to the original question

A quasigroup of order n with operation \circ is Eulerian if the sequence

$$
\begin{array}{ll}
x & y \\
x \circ y & y \circ \\
(x \circ y) & (x \circ y) \circ(y \circ(x \circ y)) \quad \cdots .
\end{array}
$$

does not repeat before n^{2} steps.

Back to the original question

A quasigroup of order n with operation \circ is Eulerian if the sequence

$$
x \quad y \quad x \circ y \quad y \circ(x \circ y) \quad(x \circ y) \circ(y \circ(x \circ y)) \quad \cdots
$$

does not repeat before n^{2} steps.
Conjecture
If $n \geq 5$ then there exists an Eulerian quasigroup of order n.

Coprime sizes

Theorem
If $\left(Q_{1}, \bullet\right)$ and $\left(Q_{2}, \circ\right)$ are Eulerian quasigroups of orders n and m, where n and m are coprime, then $Q_{1} \otimes Q_{2}$ is an Eulerian quasigroup of order nm.

Coprime sizes

Theorem
If $\left(Q_{1}, \bullet\right)$ and $\left(Q_{2}, \circ\right)$ are Eulerian quasigroups of orders n and m, where n and m are coprime, then $Q_{1} \otimes Q_{2}$ is an Eulerian quasigroup of order nm.

Proof.

In the sequence

$$
(a, x) \quad(b, y) \quad(a \bullet b, x \circ y) \quad(b \bullet(a \bullet b), y \circ(x \circ y)) \quad \cdots
$$

the first coordinates repeat every n^{2} steps, but not earlier, and the second coordinates repeat every m^{2} steps, but not earlier.

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.
RAB thinks: gulp! but Chris Brien is coming to work with me in July-August on two-phase experiments, and I also have to talk at LinStat 2010 in Tomar, Portugal.

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.
RAB thinks: gulp! but Chris Brien is coming to work with me in July-August on two-phase experiments, and I also have to talk at LinStat 2010 in Tomar, Portugal.
RAB gives a talk about the problem in Tomar (and starts new work there with Pierre Druilhet on designs for total effects).

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.
RAB thinks: gulp! but Chris Brien is coming to work with me in July-August on two-phase experiments, and I also have to talk at LinStat 2010 in Tomar, Portugal.
RAB gives a talk about the problem in Tomar (and starts new work there with Pierre Druilhet on designs for total effects).
IMW comes to London, and fruitful work gets done.

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.
RAB thinks: gulp! but Chris Brien is coming to work with me in July-August on two-phase experiments, and I also have to talk at LinStat 2010 in Tomar, Portugal.
RAB gives a talk about the problem in Tomar (and starts new work there with Pierre Druilhet on designs for total effects).
IMW comes to London, and fruitful work gets done.
Email from Ian Wanless on 11 July 2010:
Back in Australia now and awake in the middle of the night... but wanted to let you know that in my sleeplessness I've solved that parity question.

Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to finish that paper, so I am coming to visit you in June-July.
RAB thinks: gulp! but Chris Brien is coming to work with me in July-August on two-phase experiments, and I also have to talk at LinStat 2010 in Tomar, Portugal.
RAB gives a talk about the problem in Tomar (and starts new work there with Pierre Druilhet on designs for total effects).
IMW comes to London, and fruitful work gets done.
Email from Ian Wanless on 11 July 2010:

> Back in Australia now and awake in the middle of the night... but wanted to let you know that in my sleeplessness I've solved that parity question.

We still have no general construction, but a paper eventually got written and submitted.

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- $q \quad$ where q is an odd prime power and $q \geq 5$

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power
- $2 q$ where q is an odd prime power

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power
- $2 q$ where q is an odd prime power
- $4 q \quad$ where q is an odd prime power

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power
- $2 q$ where q is an odd prime power
- $4 q$ where q is an odd prime power
- powers of 2 bigger than 4

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power
- $2 q$ where q is an odd prime power
- $4 q$ where q is an odd prime power
- powers of 2 bigger than 4

Strategy

So all we have to do is to find an Eulerian quasigroup for all of the following orders:

- q where q is an odd prime power and $q \geq 5$
- $3 q$ where q is an odd prime power
- $2 q$ where q is an odd prime power
- $4 q$ where q is an odd prime power
- powers of 2 bigger than 4
(and the paper had been accepted before we realised that we also need)
- $3 \times$ all non-trivial powers of 2 .

Reminder: the obvious way is no good

If p is prime and $Q=\mathbb{Z}_{p}$, then no binary operation of the form

$$
x \circ y=a x+b y+c
$$

makes Q into an Eulerian quasigroup.

Reminder: the obvious way is no good

If p is prime and $Q=\mathbb{Z}_{p}$, then no binary operation of the form

$$
x \circ y=a x+b y+c
$$

makes Q into an Eulerian quasigroup.
If $a+b-1 \neq 0$ and $x=-(a+b-1)^{-1} c$ then $x \circ x=x$.

Reminder: the obvious way is no good

If p is prime and $Q=\mathbb{Z}_{p}$, then no binary operation of the form

$$
x \circ y=a x+b y+c
$$

makes Q into an Eulerian quasigroup.
If $a+b-1 \neq 0$ and $x=-(a+b-1)^{-1} c$ then $x \circ x=x$.
If $a+b-1=0$ and $b \neq 2$ and $t=-(b-2)^{-1} c$ then $m t \circ(m+1) t=(m+2) t$ for all integers m, so we get a circle of size p.

Reminder: the obvious way is no good

If p is prime and $Q=\mathbb{Z}_{p}$, then no binary operation of the form

$$
x \circ y=a x+b y+c
$$

makes Q into an Eulerian quasigroup.
If $a+b-1 \neq 0$ and $x=-(a+b-1)^{-1} c$ then $x \circ x=x$.
If $a+b-1=0$ and $b \neq 2$ and $t=-(b-2)^{-1} c$ then $m t \circ(m+1) t=(m+2) t$ for all integers m, so we get a circle of size p.

If $a+b-1=0$ and $b=2$ then ${ }^{m} \mathrm{C}_{2} c \circ{ }^{m+1} \mathrm{C}_{2} c={ }^{m+2} \mathrm{C}_{2} c$ for all positive integers m, so we get a circle of size p.

Technique to avoid brute search

If q is odd, try taking $Q=\mathbb{Z}_{q}$ and putting

$$
x \circ y=\pi(x+y)
$$

where π is a relatively simple permutation.

Technique to avoid brute search

If q is odd, try taking $Q=\mathbb{Z}_{q}$ and putting

$$
x \circ y=\pi(x+y)
$$

where π is a relatively simple permutation.
For example, when $q=7$ put $\pi=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)(34)$ so that

$$
4 \circ 5=\pi(4+5)=\pi(2)=0
$$

Technique to avoid brute search

If q is odd, try taking $Q=\mathbb{Z}_{q}$ and putting

$$
x \circ y=\pi(x+y)
$$

where π is a relatively simple permutation.
For example, when $q=7$ put $\pi=(012)(34)$ so that

$$
4 \circ 5=\pi(4+5)=\pi(2)=0 .
$$

This (the permutation (0 12) with some adjacent transpositions) works for all odd numbers that we have tried.

That parity obstacle

Theorem
If n is even then no Eulerian quasigroup can be obtained from a group of order n by permutions of rows, columns or symbols.

That parity obstacle

Theorem
If n is even then no Eulerian quasigroup can be obtained from a group of order n by permutions of rows, columns or symbols.
... so IMW found another technique to cut down the computer search when n is even.

for all practical purposes

Theorem
If $n \geq 5$ and there is no Eulerian quasigroup of order n then n is divisible by a prime power exceeding 1000.

References I

- Aldred, R. E. L., Bailey, R. A., McKay, B. D. and Wanless, I. M.:
Circular designs balanced for neighbours at distances one and two.
Biometrika, 101 (2014), 943-956.
- Azaïs, J.-M., Bailey, R. A. and Monod, H.:

A catalogue of efficient neighbour-designs with border plots.
Biometrics, 49 (1993), 1252-1261.

- Bailey, R. A.:

Quasi-complete Latin squares: construction and randomization.
Journal of the Royal Statistical Society, Series B 46 (1984), 323-334.

References II

- Bailey, R. A. and Druilhet, P.:

Optimality of neighbour-balanced designs for total effects. Annals of Statistics 32 (2004), 1650-1661.

- Bailey, R. A. and Druilhet, P.:

Optimal cross-over designs for full interaction models. Annals of Statistics, 42 (2014), 2282-2300.

- Bayer, M. M. and Todd, C. D.: Effect of polypide regression and other parameters on colony growth in the cheilostomate Electra pilosa (L.). In Bryozoans in Space and Time (eds. D. P. Gordon, A. M. Smith and J. A. Grant-Mackie), pp. 29-38. Wellington, NZ: National Institute of Water and Atmospheric Research (1996).

References III

- David, O., Monod, H., Lorgeau, J. and Philippeau, G.: Control of interplot interference in grain maize: a multi-site comparison.
Crop Science, 41 (2001), 406-414.
- Druilhet, P.:

Optimality of neighbour-balanced designs.
Journal of Statistical Planning and Inference, 81 (1999), 141-152.

- Preece, D. A.:

Non-orthogonal Graeco-Latin designs.
In Combinatorial Mathematics IV (eds. L. R. A. Casse and W. D. Wallis), Lecture Notes in Mathematics, 560, pp. 7-26. Berlin: Springer (1976).

