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Outline

I Some general considerations in the design and analysis of
experiments where there may be an effect of neighbouring
treatments.

I The original problem, and first steps towards its solution.
I Two variants on the original problem, and their complete

solution.
I What can we say about the original problem?
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An experiment on sunflowers

Sunflowers are traditionally very tall plants.
When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to
compare the new varieties with the old.

Problem: If we grow each variety in a separate field,
then any perceived differences may be caused by differences in
fertility between the fields.

Problem: If we grow the varieties mixed up in the same field,
with several plots per variety, then each tall variety may shade
the variety growing on the plot to its immediate North.

Solution: Use a neighbour-balanced design in which
each ordered pair (i, j) of different varieties occurs
the same number of times as (South, North) neighbours.
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Two designs for four varieties of sunflower

6

A B C D
D A B C
B C D A
C D A B
C D A B

A B C D
D A B C
B C D A
C D A B
X X X X

The Southern row consists of
treated border plots on which
no response is measured.

The Southern row is simply
whatever is at the edge of the
field.

Each variety has each variety
(including itself) just once as
a Southern neighbour.

Each variety has other each
variety, and the field edge,
just once as a Southern neigh-
bour.
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An experiment on control of aphids

Entomologists wanted to compare several sprays to
deter aphids from the crop without killing them.
The sprays should be applied to a square array of
rectangular plots in a single field, using a Latin square (each
spray occurs on one plot per row and one plot per column).

Problem: If one spray is effective, it may actually increase the
number of aphids on neighbouring plots.
The aphids are as likely to spread East as West,
so direction in one dimension is not an issue,
but the North–South effect may be different from the East–West
one, because the plots are not square.

Solution: Use a quasi-complete Latin square,
in which each unordered pair {i, j} of sprays occurs
the same number of times as neighbours within rows
and the same number of times as neighbours within columns.
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Five sprays on aphids

P X D G M
X G P M D
D P M X G
G M X D P
M D G P X

Each pair of different treatments occurs
twice as row neighbours and twice as column neighbours.
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Unequal replication (X denotes ‘control’)

X P D M G X
M X P G X D
D G M P X X
G D X X M P
X M X D P G
P X G X D M
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The experiment at Rothamsted on control of aphids

The following year, many Rothamsted scientists used this
design.
I had to beg them to come back to me to let me adapt it to their
number of treatments.
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Some issues in neighbour designs

I Border plots or not?

Usual in forestry experiments, but in other contexts it may
seem wasteful to have treated plots that are not measured.

I Self-neighbours or not?
Necessary if direct effects are to be orthogonal to
neighbour effects, but usually impossible if direct effects
are to be orthogonal to blocks.

I One or two dimensions?
I Neighbour effects in one or both directions

in each dimension?
I Left-neighbour effects the same as right-neighbour effects?
I Equal replication or not?
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Data analysis: what do we want to do?

I We might want to estimate just the direct effects
(for example, tasting coffee):

if we use a neighbour-balanced design and fit neighbour
effects then we remove bias but this reduces error degrees
of freedom and so may reduce power.
Do we want to test the hypothesis that all the brands of
coffee taste the same (in which case we need power)
or do we want to estimate how much better (on some
scale) coffee A tastes than coffee B (in which case we want
zero bias and small true variance)?
Some people , in some applications, recommend using a
neighbour-balanced design to reduce bias but fitting only
the direct effects.
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Data analysis: what do we want to estimate?

I We might want to estimate just the total effects
(for example, what happens when the farmer uses only the
short variety?):

there is a trade-off between having runs of the same
treatment and avoiding confounding treatments with
blocks.

I We might want to estimate both direct and neighbour
effects
(for example, to make predictions about mixed plantings
in future):
now we need balance (or orthogonality) between different
types of neighbour effects as well as between these and
direct effects.
In particular, if there are effects of neighbours from both
the left and the right, then we need some sort of
combinatorial balance at distance two even if the effects
are felt only at distance one.

11/44



Data analysis: what do we want to estimate?

I We might want to estimate just the total effects
(for example, what happens when the farmer uses only the
short variety?):
there is a trade-off between having runs of the same
treatment and avoiding confounding treatments with
blocks.

I We might want to estimate both direct and neighbour
effects
(for example, to make predictions about mixed plantings
in future):
now we need balance (or orthogonality) between different
types of neighbour effects as well as between these and
direct effects.
In particular, if there are effects of neighbours from both
the left and the right, then we need some sort of
combinatorial balance at distance two even if the effects
are felt only at distance one.

11/44



Data analysis: what do we want to estimate?

I We might want to estimate just the total effects
(for example, what happens when the farmer uses only the
short variety?):
there is a trade-off between having runs of the same
treatment and avoiding confounding treatments with
blocks.

I We might want to estimate both direct and neighbour
effects
(for example, to make predictions about mixed plantings
in future):

now we need balance (or orthogonality) between different
types of neighbour effects as well as between these and
direct effects.
In particular, if there are effects of neighbours from both
the left and the right, then we need some sort of
combinatorial balance at distance two even if the effects
are felt only at distance one.

11/44



Data analysis: what do we want to estimate?

I We might want to estimate just the total effects
(for example, what happens when the farmer uses only the
short variety?):
there is a trade-off between having runs of the same
treatment and avoiding confounding treatments with
blocks.

I We might want to estimate both direct and neighbour
effects
(for example, to make predictions about mixed plantings
in future):
now we need balance (or orthogonality) between different
types of neighbour effects as well as between these and
direct effects.

In particular, if there are effects of neighbours from both
the left and the right, then we need some sort of
combinatorial balance at distance two even if the effects
are felt only at distance one.

11/44



Data analysis: what do we want to estimate?

I We might want to estimate just the total effects
(for example, what happens when the farmer uses only the
short variety?):
there is a trade-off between having runs of the same
treatment and avoiding confounding treatments with
blocks.

I We might want to estimate both direct and neighbour
effects
(for example, to make predictions about mixed plantings
in future):
now we need balance (or orthogonality) between different
types of neighbour effects as well as between these and
direct effects.
In particular, if there are effects of neighbours from both
the left and the right, then we need some sort of
combinatorial balance at distance two even if the effects
are felt only at distance one.

11/44



An experiment in marine biology

Richard Cormack (St Andrews) posed me this question in 1993.

A marine biologist wanted to compare 5 genotypes of bryozoan
by suspending them in sea water around the circumference of a
cylindrical tank. Each genotype was replicated 5 times, so that
altogether 25 items were suspended in the tank.

The marine biologist required that
(i) each ordered pair of items should occur just once as

ordered neighbours around the circumference of the tank;
(ii) each ordered pair of items should occur just once with a

single item in between them, in order.
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A circular design for 5 treatments with neighbour balance
at distances one and two
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The lazy way to write the design

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;
in other words, the design has neighbour balance at distances
one and two.

15/44



Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;
in other words, the design has neighbour balance at distances
one and two.

15/44



Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ

can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;
in other words, the design has neighbour balance at distances
one and two.

15/44



Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size

if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;
in other words, the design has neighbour balance at distances
one and two.

15/44



Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;

in other words, the design has neighbour balance at distances
one and two.

15/44



Statistical model

Denote by τ(i) the treatment on plot i.

Denote by Yi the response on plot i.

Yi = λτ(i−1) + δτ(i) + ρτ(i+1) + εi

where the εi are independent random variables with mean 0
and common variance σ2.

The direct treatment effects δ,
the left neighbour effects λ
and the right neighbour effects ρ
can be estimated orthogonally of each other
in a experiment of this size
if and only if each pair (λj, δk) occurs equally often
and each pair (δj, ρk) occurs equally often
and each pair (λj, ρk) occurs equally often;
in other words, the design has neighbour balance at distances
one and two.

15/44



Generalize the original problem

I wanted to prepare myself for future design requests like this.

Can we construct such a neighbour-balanced design
for n treatments each replicated n times
around a circle with space for n2 items?
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Those conditions again

Among the triples of the form(
τ(i− 1), τ(i), τ(i + 1)

)
,

each ordered pair of treatments occurs once in positions
1 and 2, once in positions 1 and 3, and once in positions 2 and 3.

Among the triples of the form(
row, column, letter

)
,

each ordered pair of symbols occurs once in positions 1 and 2,
once in positions 1 and 3, and once in positions 2 and 3.

These are conditions for a Latin square
whose rows and columns have the same labels as the letters
—a quasigroup.
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Building the design from a quasigroup (Latin square)

The quasigroup operation ◦ is defined by

a ◦ b = letter in row a and column b of the Latin square.

In the circular design, each triple should have the form

(a, b, a ◦ b).

We can start with any ordered pair (x, y) and successively build
the circular design from the quasigroup as

x y x ◦ y y ◦ (x ◦ y) (x ◦ y) ◦ (y ◦ (x ◦ y)) · · ·
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Latin square to circle

◦ A B C D
A B A D C
B C D A B
C D C B A
D A B C D

( A A B A C D A A oops!

This quasigroup gives a design with four separate circles, not
one.

( A A B A C D )

( A D C C B C )

( B B D )

( D )
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Eulerian quasigroups

Let’s call a quasigroup Eulerian if it gives a single large circle:
that is, a sequence with maximal period.

0 1 2 3 4
0 1 0 2 3 4
1 2 3 1 4 0
2 3 4 0 2 1
3 0 2 4 1 3
4 4 1 3 0 2

(1 1 3 4 3 0 0 1 0 2 2 0 3 3 1 2 1 4 0 4 4 2 3 2 4)
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Do Eulerian quasigroups of order n exist?

If n ≤ 4, a manual check shows that there are none.

For n = 5, we have shown an example.

For every other value of n that we have tried,
we have found an Eulerian quasigroup by computer search;
and we can prove that existence for coprime n and m implies
existence for mn;
BUT we have been unable to prove that they always exist.

It is quite easy to show that, if Q = Zps or Q = GF(ps),
then no binary operation of the form

x ◦ y = ax + by + c

makes Q into an Eulerian quasigroup.
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Some history

After Richard Cormack posed me the question, Nick Cavenagh
(then a PhD student at QMUL, now head of the Department of
Mathematics at the University of Waikato) and I got this far,
and then got stuck.

In July 1999 I posed the question in the Problem Session at the
British Combinatorial Conference in the University of Kent.

Brendan McKay (Computer Science, Australian National
University) became interested, and worked on the question
with Ian Wanless (then his PhD student, now in the School of
Mathematical Sciences at Monash University) and Tank Aldred
(Department of Mathematics and Statistics, University of
Otago). They invented two variants of the question.

In September 2004 I spent two weeks at ANU working with
BDM and IMW (and remotely with RELA). We solved the two
variants completely.
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Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);
direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.

23/44



Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);
direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.

23/44



Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);

direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.

23/44



Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);
direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.

23/44



Variant I: no self-neighbours

Sometimes it is undesirable to have the same treatment on
neighbouring plots.

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with all but

one of the right-neighbour treatments.

The incidence of
direct treatments with left-neighbour treatments is a symmetric
balanced incomplete-block design (BIBD, aka 2-design);
direct treatments with right-neighbour treatments is a
symmetric BIBD;
left-neighbour treatments with right-neighbour treatments is a
symmetric BIBD.

Preece (1976) showed that, for overall balance, the missing
pairs at distance two must also be the self-pairs.

23/44



Idempotent Eulerian circular sequences

We need a circular design with n(n− 1) plots in which each
I each ordered pair of distinct treatments occurs just once as

ordered neighbours;
I each left-neighbour treatment occurs just once with every

right-neighbour treatment except itself.

The results of Druilhet (1999) show that such designs are
optimal for the estimation of direct effects and neighbour
effects, in the sense of minimizing average variance of these
estimators.

A quasigroup is idempotent if x ◦ x = x for all x.

Our circular design is equivalent to an idempotent quasigroup
in which the n(n− 1) off-diagonal cells give a single circle.
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Construction when n = 6 (in general, when n is even)

The treatments are the integers modulo 5, together with ∞.

sequence [4, 3, 1, 2] all different, non-zero
neighbour sums [2, 4, 3] all different, non-zero, non-1
sum of ends 1 must be 1
cumulative sums [0, 4, 2, 3, 0] last must be 0

(∞ 0 4 2 3 0 ∞ 1 0 3 4 1 ∞ 2 1 4 0 2 ∞ 3 2 0 1 3 ∞ 4 3 1 2 4)

Neighbours of ∞ at distances one and two are OK, by cyclic
construction.
Differences at distance one come from the original sequence;
most differences at distance two are the neighbour sums.
1− last cumulative sum = 1− 0 = 1 = missing neighbour-sum
so differences at distance two either side of ∞ give this.
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A circular design for 6 treatments with no self-neighbours
at distance one or two
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Construction when n = 7 (in general, when n is odd)

The treatments are the integers modulo 6, together with ∞.

sequence [4, 1, 2, 5, 3] all different, non-zero
neighbour sums [5, 3, 1, 2] all different, non-zero, non-4
sum of ends 1 must be 1
cumulative sums [0, 4, 5, 1, 0, 3] last must be 3

(∞ 0 4 5 1 0 3 ∞ 1 5 0 2 1 4 ∞ 2 0 1 3 2 5
. . . ∞ 3 1 2 4 3 0 ∞ 4 2 3 5 4 1 ∞ 5 3 4 0 5 2)

Neighbours of ∞ at distances one and two are OK, by cyclic
construction.
Differences at distance one come from the original sequence;
most differences at distance two are the neighbour sums.
1− last cumulative sum = 1− 3 = 4 = missing neighbour-sum
so differences at distance two either side of ∞ give this.
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Solution for variant I

Theorem
Given an initial sequence of the non-zero integers modulo n− 1
satisfying those conditions,
that construction always produces an idempotent Eulerian circular
sequence.

Theorem
Such an initial sequence can be constructed whenever n ≥ 6.
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Paradigm

Small thing
algorithm

−−−−−−−−−−−−−−−−−−−−→ Large thing

beautiful good

Theorem
If small is beautiful then large is good.

I Work out the algorithm.
I Find the appropriate definition of ‘beautiful’.
I Prove the theorem.

Theorem
I can construct a small beautiful thing for almost all values of n.

I Find a construction (which may differ for different
residues modulo something).

I Prove that it works.
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Variant II: undirectional neighbour effects

Suppose that the effect of the neighbouring treatment is the
same whether it is from the left or the right.

Yi = λτ(i−1) + δτ(i) + λτ(i+1) + εi,

where the εi are independent random variables with mean 0
and common variance σ2.

Can we arrange that every treatment have every treatment as
neighbour just once, on one side or the other?

A self-pair gives a self-neighbour on both sides, so we must
ban self-pairs. So we need a circle of n(n− 1)/2 plots.

Each plot has two neighbours, so each treatment has an even
number of neighbours, so n− 1 must be even.

Any triple (a, b, a) gives b as a neighbour of a on both sides, so
there can be no such triples.
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Construction when n = 9

The treatments are the integers modulo 9.

circular sequence (1, 2, 5, 3) ± entries are all different
circular neighbour sums (3, 7, 8, 4) ± entries are all different
cumulative sums [1, 3, 8, 2] last one is coprime to 9

(1 3 8 2 3 5 1 4 5 7 3 6 7 0 5 8 0 2 7 1 2 4 0 3 4 6 2 5 6 8 4 7 8 1 6 0)

We keep adding 2 to the original sequence of length 4.
Because 2 is coprime to 9, every pair in the original sequence
gets all its shifts modulo 9.

Differences at distance one come from the original sequence;
difference at distance two are the neighbour sums.
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We keep adding 2 to the original sequence of length 4.
Because 2 is coprime to 9, every pair in the original sequence
gets all its shifts modulo 9.

Differences at distance one come from the original sequence;
difference at distance two are the neighbour sums.
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A circular design for 9 treatments with undirectional
neighbour balance at distances one and two

1 3 8 2
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Solution for variant II

Theorem
Given an initial circular sequence of (n− 1)/2 of the
integers modulo n satisfying those conditions,
that construction always produces a circular sequence
balanced for undirected neighbours at distances one and two.

Theorem
Such an initial sequence can be constructed whenever n is odd and
n ≥ 9. There is also such a circular sequence when n = 7.
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Back to the original question

A quasigroup of order n with operation ◦ is Eulerian if the
sequence

x y x ◦ y y ◦ (x ◦ y) (x ◦ y) ◦ (y ◦ (x ◦ y)) · · ·

does not repeat before n2 steps.

Conjecture

If n ≥ 5 then there exists an Eulerian quasigroup of order n.
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Coprime sizes

Theorem
If (Q1, •) and (Q2, ◦) are Eulerian quasigroups of orders n and m,
where n and m are coprime,
then Q1 ⊗Q2 is an Eulerian quasigroup of order nm.

Proof.
In the sequence

(a, x) (b, y) (a • b, x ◦ y) (b • (a • b), y ◦ (x ◦ y)) · · ·

the first coordinates repeat every n2 steps, but not earlier,
and the second coordinates repeat every m2 steps, but not
earlier.
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Some more history

Email from Ian Wanless to RAB in Spring 2010: we have to
finish that paper, so I am coming to visit you in June–July.

RAB thinks: gulp! but Chris Brien is coming to work with me
in July–August on two-phase experiments, and I also have to
talk at LinStat 2010 in Tomar, Portugal.

RAB gives a talk about the problem in Tomar (and starts new
work there with Pierre Druilhet on designs for total effects).

IMW comes to London, and fruitful work gets done.

Email from Ian Wanless on 11 July 2010:

Back in Australia now and awake in the middle of the
night... but wanted to let you know that in my sleeplessness
I’ve solved that parity question.

We still have no general construction, but a paper eventually
got written and submitted.
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Strategy

So all we have to do is to find an Eulerian quasigroup for all of
the following orders:

I q where q is an odd prime power and q ≥ 5

I 3q where q is an odd prime power
I 2q where q is an odd prime power
I 4q where q is an odd prime power
I powers of 2 bigger than 4

(and the paper had been accepted before we realised that we
also need)

I 3× all non-trivial powers of 2.
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Reminder: the obvious way is no good

If p is prime and Q = Zp, then no binary operation of the form

x ◦ y = ax + by + c

makes Q into an Eulerian quasigroup.

If a + b− 1 6= 0 and x = −(a + b− 1)−1c then x ◦ x = x.

If a + b− 1 = 0 and b 6= 2 and t = −(b− 2)−1c
then mt ◦ (m + 1)t = (m + 2)t for all integers m,
so we get a circle of size p.

If a + b− 1 = 0 and b = 2
then mC2c ◦ m+1C2c = m+2C2c for all positive integers m,
so we get a circle of size p.
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Technique to avoid brute search

If q is odd, try taking Q = Zq and putting

x ◦ y = π(x + y)

where π is a relatively simple permutation.

For example, when q = 7 put π = (0 1 2)(3 4) so that

4 ◦ 5 = π(4 + 5) = π(2) = 0.

This (the permutation (0 1 2) with some adjacent
transpositions) works for all odd numbers that we have tried.
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That parity obstacle

Theorem
If n is even then no Eulerian quasigroup can be obtained from
a group of order n by permutions of rows, columns or symbols.

. . . so IMW found another technique to cut down the computer
search when n is even.
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. . . for all practical purposes

Theorem
If n ≥ 5 and there is no Eulerian quasigroup of order n
then n is divisible by a prime power exceeding 1000.
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