

Abstract: II

(a) All medical centres involve the same number, say k_{1}, of cancer types, where $k_{1}<v_{1}$.
(b) All medical centres use the same number, say k_{2}, of drugs, where $k_{2}<v_{2}$.
(c) Each pair of distinct cancer types are involved together at the same non-zero number, say λ_{11}, of medical centres.
(d) Each pair of distinct drugs are used together at the same non-zero number, say λ_{22}, of medical centres.
(e) Each drug is used on each type of cancer at the same number, say λ_{12}, of medical centres.

The first four conditions state that,
considered separately, the designs for cancer types and drugs are balanced incomplete-block designs
(a.k.a. BIBDs or 2-designs)
with the medical centres as blocks. We propose calling a design that satisfies all five properties a 2-part BIBD or 2-part 2-design.

Abstract: III

The parameters of a 2-part 2-design satsify some equations, and also an inequality that generalizes both Fisher's inequality and Bose's inequality.

We give several constructions of 2-part 2-designs,
then generalize them to m-part 2-designs.

An example: $v_{1}=6, k_{1}=3, v_{2}=5, k_{2}=2, b=10$

Thanks to Valerii Fedorov for this image.

Comparison with classical factorial designs

Block 1 of our example is shown as

C1	C2	C3
D1, D5	D1, D5	D1, D5

which means that the medical centre which it represents will accept into the trial only patients with cancer types 1,2 or 3; patients of each of these types will be randomized
(in approximately equal numbers) to

- drug 1, drug 5 (original idea) (placebo may be one of the listed "drugs")
- drug 1, drug 5, and placebo (modified idea)
- drug 1, drug 5, their combination, and placebo (further modification).
Contrast this with a classical factorial design in blocks, which would never have level C 1 of factor C occurring in several combinations in a block while level C4 does not occur in that block at all.

Easy construction IV: Group-divisible designs	Serious construction V: Permutation groups
If $v_{1}=v_{2}$ and $k_{1}=k_{2}$ then the concise form of a 2-part 2-design is a "semi-regular group-divisible incomplete block-design for two groups of treatments". Look these up in Clatworthy's Tables of Two-Associate Class Partially Balanced Designs. If there is a group G which acts doubly transitively on the set of cancer types and also acts doubly transitively on the set of drugs, then choose an initial block and then get the remaining blocks by applying the permutations in G to it. Interesting examples are too large to fit on a slide! Eailey\quad2-part 2-designs\quad2-part 2-designs	

A very general construction	A final example
m c-partitionable 2-designs (c may be 1) The ingredients can be c-partitionable multi-part 2-designs. It suffices to have all but one c-partitionable, so long as c divides the number of blocks in the other one. orthogonal array with m columns (this may have all possible rows)	The Hadamard construction gives a design for 6 cancer types and 6 drugs, with 3 cancer types and 3 drugs in each block. The design has 20 blocks, and can be partitioned into 10 classes of 2 blocks, each of which is a single replicate of cancer types and of drugs. Suppose that there are 5 biomarkers, and we want 2 in each block. There are 10 pairs of biomarkers. Match pairs to classes, and put those two biomarkers in both blocks in that class. Suppose that there are 6 biomarkers, and we want 3 in each block. There is a BIBD for 6 biomarkers in 10 blocks of size 3 . Match these blocks to the original classes. So our new designs for $m=2$ lead to new designs for larger values of m.
Bailey 2-part 2-designs	2iley 2 -part 2-designs

