	Abstract: I
Multi-part balanced incomplete-block designs	
R. A. Bailey University of St Andrews	In order to keep the protocol for a cancer clinical trial simple for each medical centre involved, it is proposed to limit each medical centre to only a few of the cancer types and only a few of the drugs. Let v_1 be the total number of cancer types, and v_2 the total number of drugs.
Combinatorics Seminar, Shanghai Jiao Tong University, 4 October 2018 Joint work with Peter Cameron (University of St Andrews)	At the workshop on <i>Design and Analysis of Experiments in Healthcare</i> at the Isaac Newton Institute, Cambridge, UK in 2015, Valerii Fedorov listed the following desirable properties.
Bailey 2-part 2-designs 1	36Bailey 2-part 2-designs 2/3

Abstract: II	Ab	ostract: III	
 (a) All medical centres involve the same number, say k₁, of cancer types, where k₁ < v₁. (b) All medical centres use the same number, say k₂, of drugs, where k₂ < v₂. (c) Each pair of distinct cancer types are involved together at the same non-zero number, say λ₁₁, of medical centres. (d) Each pair of distinct drugs are used together at the same non-zero number, say λ₂₂, of medical centres. (e) Each drug is used on each type of cancer at the same number, say λ₁₂, of medical centres. 		The parameters of a 2-part 2-design satsify some equations, and also an inequality that generalizes both Fisher's inequality and Bose's inequality. We give several constructions of 2-part 2-designs, then generalize them to <i>m</i> -part 2-designs.	
The first four conditions state that, considered separately, the designs for cancer types and drugs are balanced incomplete-block designs (a.k.a. BIBDs or 2-designs) with the medical centres as blocks. We propose calling a design that satisfies all five properties a 2- <i>part BIBD</i> or 2- <i>part 2-design</i> .			
Bailey 2-part 2-designs	3/36Bailey	2-part 2-designs	

Combinations: 6 Can	cer Ty	vpes a	and 5	Drug	s*	A Sym		Block 1 of our example is shown as C1 C2 C3
				Car	ncer			D1, D5 D1, D5 D1, D5
	Block	C1	C2	C3	C4	C5	C6	
	1	D1,5	D1,5	D1,5				which means that the medical centre which it represents will
Operational constraints for	2	D1,2				D1,2	D1,2	accept into the trial only patients with cancer types 1, 2 or 3;
blocks (sub trials):	3	D2,3		D2,3	D2,3			patients of each of these types will be randomized
 No more than 3 cancer types per block 	4	D3,4	D3,4				D3,4	(in approximately equal numbers) to
Only 2 drugs per block	5	D4,5			D4,5	D4,5	_	(in upproximately equal manifers) to
			D1,3		D1,3	D1,3		drug 1, drug 5 (original idea)
			02,4	02,4		02,4	03.5	(placebo may be one of the listed "drugs")
	9			05,5	D1.4	05,5	05,5	 drug 1, drug 5, and placebo (modified idea)
	10		D2.5	01,4	D2.5		D2.5	drug 1, drug 5, their combination, and placebo
Properties: Every pair of drugs at one trial Every pair of drugs at one trial Every pair of cancer types attwo trials Every drug with every cancer type attwo trials types and compating errollment rates per cancer Every drug with every cancer type attwo trials Every drug with every cancer Every drug with every ev							gns take e er cancer	(further modification). Contrast this with a classical factorial design in blocks,
Thanks to Valerii Fedorov for this image.								which would never have level C1 of factor C occurring in several combinations in a block while level C4 does not occur

The concise representation of the design	Definition of 2-part 2-design					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Definition A 2-part 2-design for v_1 cancer types and v_2 drugs in <i>b</i> medical centres, with further parameters k_1 , k_2 , λ_{11} , λ_{22} and λ_{12} , is an allocation of cancer types and drugs to medical centres satisfying: (a) all medical centres involve k_1 cancer types, where $k_1 < v_1$; (b) all medical centres use k_2 drugs, where $k_2 < v_2$; (c) each pair of distinct cancer types occur together at λ_{11} medical centres, where $\lambda_{11} > 0$; (d) each pair of distinct drugs occur together at λ_{22} medical centres, where $\lambda_{22} > 0$; (e) each drug occurs with each type of cancer at λ_{12} medical centres.					
Bailey 2-part 2-designs	7/36Bailey 2-part 2-designs 8/36					

С	onditions on parameters	А	generalization of resolvability	
	Theorem In a 2-part 2-design with parameters v_1 , v_2 , b , k_1 , k_2 , λ_{11} , λ_{22} and λ_{12} , the following hold. 1. Each cancer type occurs in r_1 blocks, where $v_1r_1 = bk_1$. 2. Each drug occurs in r_2 blocks, where $v_2r_2 = bk_2$. 3. $\lambda_{11}(v_1 - 1) = r_1(k_1 - 1)$. 4. $\lambda_{22}(v_2 - 1) = r_2(k_2 - 1)$. 5. $bk_1k_2 = v_1v_2\lambda_{12}$. 6. $b \ge v_1 + v_2 - 1$. Items 1–5 are obtained by counting something in two different ways. Item 6 is like Fisher's Inequality (in a 2-design, $b \ge v$).		Definition A block design is resolvable if the set of blocks can be partitioned into <i>r</i> replicates of b/r blocks each, in such a way that each treatment occurs once in each replicate. In general, $r_1 \neq r_2$, so we cannot use the usual definition of resolvable design here. Definition A 2-part block design is <i>c</i> -partitionable if the set of blocks can be grouped into <i>c</i> classes of b/c blocks each, in such a way that every cancer type occurs the same number of times in each class. Theorem If a 2-part 2-design is <i>c</i> -partitionable then $b \ge v_1 + v_2 + c - 2$.	
Bailey	2-part 2-designs	9/36Bailey	2-part 2-designs	10/36

No	tes on the theorem	Easy construction I: Cartesian product
	Theorem If a 2-part 2-design is c-partitionable then $b \ge v_1 + v_2 + c - 2$. (a) Every 2-part 2-design is 1-partitionable, so it is always true that $b \ge v_1 + v_2 - 1$. (b) Bose's Inequality states that, for a resolvable 2-design, $b \ge v + r - 1$. Our new theorem generalizes that.	Let Δ_1 be a BIBD for v_1 treatments in b_1 blocks of size k_1 , and let Δ_2 be a BIBD for v_2 treatments in b_2 blocks of size k_2 . Form all b_1b_2 combinations of a block of each sort. For each block combination, form the Cartesian product of their sets of treatments. The result is a 2-part 2-design, but it has b_1b_2 blocks, which is often too large.
Bailey	2-part 2-designs 11/3	6Bailey 2-part 2-designs 12/3

Easy construction II: Swap	Easy construction III: Interchange
Given a 2-part 2-design, create another one, interchanging the values of k_1 and $v_1 - k_1$, by replacing the set of cancer types in each block by the complementary set of cancer types. The result is also a 2-part 2-design so long as $v_1 - k_1 \ge 2$. Similarly, swap drugs to interchange k_2 and $v_2 - k_2$.	Given a 2-part 2-design, create another one, interchanging the values of v_1 and v_2 , and the values of k_1 and k_2 , by interchanging the roles of cancer types and drugs.
Bailey 2-part 2-designs 13/36	Bailey 2-part 2-designs 14/36

Serio	us construction I: Subcartesian product	An	An example of a subcartesian product: $v_1 = 3, v_2 = 4$					
Le ar Su ar Pa in M in Fc Th ar	Let Δ_1 be a BIBD for v_1 treatments in b_1 blocks of size k_1 , and let Δ_2 be a BIBD for v_2 treatments in b_2 blocks of size k_2 . appose that Δ_2 is resolvable with replication r , and that r divides b_1 . artition the set of blocks of Δ_1 into r sets of b_1/r blocks, any way at all. fatch these sets to the r resolution classes of Δ_2 , any way at all. or each matched pair, construct the cartesian product design. the result is a 2-part 2-design, and it has b_1b_2/r blocks.		$ \begin{array}{c} \Delta_1 \\ b = 3 \\ \hline C1, C2 \\ C1, C3 \\ C2, C3 \end{array} $	Block 1 2 3 4 5 6	Cancer types C1, C2 C1, C2 C1, C3 C1, C3 C1, C3 C2, C3 C2, C3	Drugs D1, D3 D2, D4 D2, D3 D1, D4 D1, D2 D3, D4	$\begin{array}{c} \Delta_2\\ \text{resolvable}\\ r=3\\ \hline D1, D3\\ D2, D4\\ \hline D2, D3\\ D1, D4\\ \hline D1, D2\\ D3, D4\\ \end{array}$	
Bailey	2-part 2-designs	15/36Bailey			2-part 2-designs			16/36

Serious construction II: Hadamard matrix	Serious construction II: Hadamard matrix
If $v_1 = v_2 = 2k_1 = 2k_2 = 2n$, write down a Hadamard matrix of order $4n$ with all entries $+1$ in the first row. $\begin{bmatrix} +1 & +1 & +1 & +1 & +1 & +1 & +1 & +1 &$	If $v_1 = v_2 = 2k_1 = 2k_2 = 2n$, write down a Hadamard matrix of order $4n$ with all entries $+1$ in the first row. Replace all \pm entries in row 2 with levels of C/D. $\begin{bmatrix} +1 & +1 & +1 & +1 & +1 & +1 & +1 & +1 $
+1 $+1$ -1 $+1$ -1 -1 $+1$ -1 -1 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ -1 -1	
$ \begin{vmatrix} +1 & -1 & +1 & -1 & -1 & +1 & +1 & +1 &$	+1 -1 $+1$ -1 -1 $+1$ $+1$ $+1$ -1 -1 $+1$ $+1$
	$\bar{\text{Row}} 3 \rightarrow \{\text{C1,C3,C5} \text{D1,D4,D5}\} \text{ and } \{\text{C2,C4,C6} \text{D2,D3,D6}\}.$
Patles 2 and designs 17/26	And so on, so $b = 2(4n - 2) = 8n - 4$.
paney 2-part 2-designs 17/36	paney 2-part 2-designs 18/30

A good outcome of the Hadamard construction	Serious construction III: Symmetric BIBD
A Hadamard matrix of order $4n$ leads to a 2-part 2-design with $v_1 = v_2 = 2n$, $k_1 = k_2 = n$ and $b = 8n - 4$. It is <i>c</i> -partitionable for $c = 4n - 2$. Often, a subcartesian product can give a 2-part 2-design with the same parameters, but this is not usually $(4n - 2)$ -partitionable.	Start with a BIBD for v treatments in v blocks of size k , where each pair of blocks have λ treatments in common, and $\lambda > 1$ and $3 \le k \le v - k$. Choose one block, and identify its treatments with drugs (so $v_2 = k$). Identify the other treatments with cancer types (so $v_1 = v - k$). Each remaining block gives a block of our 2-part 2-design, so b = v - 1 $k_2 = \lambda$ $k_1 = k - \lambda$ $\lambda_{11} = \lambda$ $\lambda_{12} = \lambda$ $\lambda_{22} = \lambda - 1$.
Ibaney 2-part 2-designs 19/36	Bailey 2-part 2-designs 20/36

Ar	ı exar	nple	fro	m a	symr	metric B	BD:	$v_1 =$	6, z	$v_2 =$	5	Se	rious construction IV: Augmentation		
	r 1 2 3 4 5 6 7 8 9 10 0 1 D1 This	ows 5 6 7 8 9 10 0 1 2 3 4 5 D2 2 is exa	are b 3 4 5 6 7 8 9 10 0 1 2 3 D3 actly	locks 4 5 6 7 8 9 10 0 1 2 3 4 D 4 the fi	9 10 0 1 2 3 4 5 6 7 8 9 4 D5 irst 2-p	T T T T T T T T T T T T T T T T T T T	$\begin{array}{c} 2-1 \\ drugs \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	event 2 ca 44 C2 43 C1 44 C3 55 C2 55 C1 55 C1	design ncer 1 2 C3 3 C4 2 C4 3 C5 4 C5 2 C4 2 C4 2 C4 7 C4 wwed	n types C5 C6 C6 C6 C6 C5 C6 C5 C6 C6 S C6 you.	10 C5			Given a 2-part 2-design with $v_2 = 2k_2 + 1$, add an extra drug, increasing v_2 to $v_2 + 1$, k_2 to $k_2 + 1$ and b to $2b$. Replace each previous block by two new blocks, both with the original subset of cancer types. One of these has the same drugs as before, plus the new drug. The other has all the remaining drugs.	
Bailey						2-part 2-design	s					21/36	Bailey	2-part 2-designs	22/36

Easy construction IV: Group-divisible designs	Serious construction V: Permutation groups
If $v_1 = v_2$ and $k_1 = k_2$ then the concise form of a 2-part 2-design is a "semi-regular group-divisible incomplete block-design for two groups of treatments". Look these up in Clatworthy's <i>Tables of Two-Associate Class Partially Balanced Designs</i> .	If there is a group G which acts doubly transitively on the set of cancer types and also acts doubly transitively on the set of drugs, then choose an initial block and then get the remaining blocks by applying the permutations in G to it. Interesting examples are too large to fit on a slide!
bailey 2-part 2-designs 23/30	blailey 2-part 2-designs 24/36

Extending the problem	3-	part 2-designs	
On 28 March 2016, Valerii sent me the png file of the first desig in this talk. When I thanked him, he emailed back the next da with Dear Rosemary, It can be never ending story For instance, can we extend the table below and add another factor: oncogenes (biomarker)?	gn y	 In a 3-part 2-design, we also have a set of v₃ biomarkers, such that (a) all medical centres involve k₁ cancer types, where k₁ < v₁; (b) all medical centres use k₂ drugs, where k₂ < v₂; (c) each pair of distinct cancer types occur together at λ₁₁ medical centres, where λ₁₁ > 0; (d) each pair of distinct drugs occur together at λ₂₂ medical centres, where λ₁₂ > 0; (e) each drug occurs with each type of cancer at λ₁₂ medical centres; (f) all medical centres use k₃ biomarkers, where k₃ < v₃; (g) each pair of distinct biomarkers occur together at λ₁₃ medical centres; (h) each biomarker occurs with each type of cancer at λ₁₃ medical centres; (i) each biomarker occurs with each drug at λ₂₃ medical centres. 	
Bailey 2-part 2-designs	25/36Bailey	2-part 2-designs	26/36

Serio	us new construction: Orthogonal array		An	exa	amp	ole usir	ng ai	n orth	ogonal	array: v	$_{1} = v_{2} =$	$v_3 = 3$	
Le Ay uu Ww Fc	et Δ_1 be a BIBD for v_1 treatments in b_1 blocks of size k_1 , 2 a BIBD for v_2 treatments in b_2 blocks of size k_2 , dd Δ_3 a BIBD for v_3 treatments in b_3 blocks of size k_3 . se an orthogonal array of strength 2, with three columns, here column <i>i</i> has b_i symbols. or each row of the orthogonal array, construct the cartesian roduct of the three blocks, one in each of Δ_1 , Δ_2 and Δ_3 .			E E O 1 2 3 1 2 3 1 2 3 3	de block block block thog arra 1 2 3 1 2 3 1 2 3 1 2 3 1	$\begin{array}{c} \operatorname{esign} \Delta_{3} \\ \begin{array}{c} 1 & \operatorname{C1} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}	1 , C2 , C3 2, C3	Blo Blo Block 1 2 3 4 5 6 7 8 9	design A; ck 1 D1 ck 2 D1 ck 3 D2 Cancer types C1, C2 C1, C3 C2, C3 C1, C2 C1, C3 C2, C3 C1, C2 C1, C3 C2, C3 C1, C2 C1, C3 C2, C3 C1, C2 C1, C2 C1, C3 C2, C3 C2, C3 C2, C3 C1, C2 C1, C2 C3 C2, C3 C2, C3 C3, C2, C3 C3, C3 C2, C3 C3, C3 C2, C3 C3, C3 C2, C3 C3, C3 C	2 , D2 , D3 , D3 , D3 , D3 , D3 , D2 , D3 , D2 , D3 , D2, D3 , D1, D2 , D3 , D1, D2 , D3 , D1, D2 , D3 , D1, D2 , D3 , D3 , D3 , D3 , D3 , D3 , D3 , D3	design ∆ Block 1 B ³ Block 2 B ³ Block 3 B ³ Bio- markers B1, B2 B1, B2 B1, B3 B2, B3 B1, B3 B1, B2 B1, B2 B1, B2 B1, B3	A1 1, B2 1, B3 2, B3	
Bailey	2-part 2-designs	27/36E	Bailey						2-part 2-designs			28,	/3

General multi-part BIBD	95	No	othing new under the sun	
The foregoing definition Theorem Let Δ be an <i>m</i> -part 2-design If the parameters are <i>b</i> , <i>v_i</i> , <i>k</i> then the following hold. 1. For $i = 1,, m$, each thing of type <i>i</i> occ 2. For $i = 1,, m$, $\lambda_{ii}(v_i - 1) = r_i(k_i - 1)$ 3. For $1 \le i < j \le m$, $bk_ik_j = v_iv_j\lambda_{ij}$. 4. If Δ is <i>c</i> -partitionable the 5. In particular, $b \ge v_1$ +	extends to <i>m</i> different types of thing. <i>a with</i> v_i <i>things of type i, for</i> $i = 1,, n$ i_i, λ_{ii} and λ_{ij} for $1 \le i < j \le m$, <i>urs in</i> r_i <i>blocks, where</i> $v_i r_i = bk_i$. <i>)</i> . <i>hen</i> $b \ge v_1 + \dots + v_m + c - m$. $\dots + v_m - m + 1$.	1. 20 (26 Pailar	In May 2018 we learnt that designs like these had already been proposed by Randy Sitter (<i>Biometrika</i> , 1993) and Rahul Mukerjee (<i>Journal of Statistical Planning and Inference</i> , 1998). Mukerjee's main construction is the general orthogonal array (possibly trivial, i.e. all possible rows) applied to parts of m component BIBDs which are all c -partitionable (possibly with $c = 1$). There are three main differences between their approach and ours.	20.02
paney	2-part 2-designs	29/36Bailey	2-part 2-designs	30/36

Different applications: I	Different applications: II
Sitter is concerned with sampling. The population consists of <i>m</i> distinct strata of sizes v_1, \ldots, v_m . He wants to draw a random sample of size k_i from stratum <i>i</i> , for $i = 1, \ldots, m$, measure something on each element sampled, and hence estimate something about the population.	Mukerjee's proposed application is to designed experiments, but it is different from ours.For him, each of our "blocks" is a single experimental unit, to which subsets of different types of treatment are applied. $Block Cancer types Drugs1 C1, C2, C3 D1, D5Experimental Chemical mixture Varietyunit applied to the soil of wheat1C1, C2, C30D1, D5one measurementa mixture ofthree chemicalsvariety obtained bythree Chemicalscross-breedingvarieties D1 and D5$
Bailey 2-part 2-designs 31/3	Bailey 2-part 2-designs 32/36

Different constraints			Different terminology			
Sitter's and Mukerjee's applications do not need the constraint that $\lambda_{ii} > 0$. So their designs allow $k = 1$, which ours do not			Sitter and Mukerjee called their designs balanced orthogonal multi-arrays, following Brickell (<i>Congressus Numerantium</i> , 1984). Brickell does not require the separate designs to be balanced, but he does require $\lambda_{ij} = 1$ if $i \neq j$. Sitter and Mukerjee explicitly dropped this last condition.			
		Orthogonal multi-arrays (in Brickell's original definition) have been, and are still, used widely in coding theory and in statistics (where they are also called semi-Latin squares).				
		So we think that it is better not to call these designs orthogonal multi-arrays.				
Bailey	2-part 2-designs	33/36Bailey	ey 2-part 2-designs	34/3		

A very general construction	on	A final example
<i>m c</i> -partitionable 2-designs (<i>c</i> may be 1) The ingredients can be <i>c</i> -partitionable multi-part 2-designs. It suffices to have all but one <i>c</i> -partitionable, so long as <i>c</i> divides the number of blocks in the other one.	orthogonal array with <i>m</i> columns (this may have all possible rows)	The Hadamard construction gives a design for 6 cancer types and 6 drugs, with 3 cancer types and 3 drugs in each block. The design has 20 blocks, and can be partitioned into 10 classes of 2 blocks, each of which is a single replicate of cancer types and of drugs. Suppose that there are 5 biomarkers, and we want 2 in each block. There are 10 pairs of biomarkers. Match pairs to classes, and put those two biomarkers in both blocks in that class. Suppose that there are 6 biomarkers, and we want 3 in each block. There is a BIBD for 6 biomarkers in 10 blocks of size 3. Match these blocks to the original classes. So our new designs for $m = 2$ lead to new designs for larger values of m .
Bailey	2-part 2-designs 35/3	/36Bailey 2-part 2-designs 36/3