

Chapter 1		Resolvable block designs	
Square lattice designs.		Trials of new crop varieties typically have a large number of varieties. Even at a well-run testing centre, inhomogeneity among the plots (experimental units) makes desirable to group the plots into homogeneous blocks, usually too small to contain all the varieties. For management reasons, it is often convenient if the blocks can themselves be grouped into replicates, in such a way the each variety occurs exactly once in each replicate. Such a blo design is called resolvable . (Some people call these <i>resolved</i> designs. Williams (1977) called them <i>generalized lattice</i> designs.)	it at ock
Bailar	Tracture hunt 3	50B-ilay Traseuro hunt	4/50

Sq	uare lattice designs	١	What is a Latin square?	
	Yates (1936, 1937) introduced square lattice designs for this purpose. The number of varieties has the form n^2 for some integer n , and each replicate consists of n blocks of n plots. Imagine the varieties listed in an abstract $n \times n$ square array. The rows of this array form the blocks of the first replicate, and the columns of this array form the blocks of the second replicate. Let r be the number of replicates. If $r > 2$ then $r - 2$ mutually orthogonal Latin squares of order n are needed. For each of these Latin squares, each letter determines a block of size n .		DefinitionLet n be a positive integer.A Latin square of order n is an $n \times n$ array of cells in which n symbols are placed, one per cell, in such a way that each symbol occurs once in each row and once in each column.Here is a Latin square of order 4. $\boxed{A \ B \ C \ D}$ $\boxed{B \ A \ D \ C}$ 	
Bailey	Treasure hunt	5/59Baile	ey Treasure hunt	6/59

Mutually orthogonal Latin squares	Square lattice designs for 16 varieties in 2–4 replicates	
DefinitionA pair of Latin squares of order <i>n</i> are orthogonal to each otherif, when they are superposed, each letter of one occurs exactlyonce with each letter of the other.Here are a pair of orthogonal Latin squares of order 4.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Definition A collection of Latin squares of the same order is mutually orthogonal if every pair is orthogonal. Bailey Treasure hunt 7/59	Using a third Latin square orthogonal to the previous two Latin squares gives a fifth replicate, if required. All pairwise variety concurrences are in {0,1}.	

Square lattice designs for n^2 varieties in rn blocks of n	Good property I: Last-minute changes or area damage
 Square lattice designs for n² varieties, arranged in <i>r</i> replicates, each replicate consisting of <i>n</i> blocks of size <i>n</i>. Construction Write the varieties in an n × n square array. The blocks of Replicate 1 are given by the rows; the blocks of Replicate 2 are given by the columns. If r = 2 then STOP. Otherwise, write down r – 2 mutually orthogonal Latin squares of order <i>n</i>. For i = 3 to <i>r</i>, the blocks of Replicate <i>i</i> correspond to the letters in Latin square <i>i</i> – 2. 	Adding or removing a replicate to/from a square lattice design gives another square lattice design, which can permit last-minute changes in the number of replicates used. If the replicates are large natural areas that might be damaged (for example, nearby crows eat all the crop, or heavy rain starts before the last replicate is harvested) then the loss of that replicate leaves another square lattice design.
Bailey Treasure bunt 9/56	Bailey Treasure hunt 10/55

Good property II: Nearly equal concurrences	Efficiency factors and optimality
The concurrence of two varieties is the number of blocks in which they both occur. It is widely believed that good designs have all concurrences as equal as possible, and so this condition is often used in the search for good designs. In square lattice designs, all concurrences are equal to 0 or 1. If $r = n + 1$ then all concurrences are equal to 1 and so the design is balanced.	Given an incomplete-block design for a set \mathcal{T} of varieties in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i, j) -entry equal to the number of blocks in which treatments i and j both occur, and the scaled information matrix is $I - (rk)^{-1}\Lambda$. The constant vectors are in the null space of the scaled information matrix. The eigenvalues for the other eigenvectors are called canonical efficiency factors: the larger the better. Let μ_A be the harmonic mean of the canonical efficiency factors. The average variance of the estimate of a difference between two varieties in this design is
	$\frac{1}{\mu_A}$ × the average variance in an experiment with the same resources but no blocks So $\mu_A \leq 1$, and a design maximizing μ_A , for given values of r and k and number of varieties, is A-optimal.

Good property III: Optimality	We have a problem when $n = 6$
Cheng and Bailey (1991) showed that, if $r \le n + 1$, square lattice designs are optimal among block designs of this size, even over non-resolvable designs. Thus the aforementioned addition or removal of a replicate does not result in a poor design.	If $n \in \{2, 3, 4, 5, 7, 8, 9\}$ then there is a complete set of $n - 1$ mutually orthogonal Latin squares of order n . Using these gives a square lattice design for n^2 treatments in $n(n + 1)$ blocks of size n , which is a balanced incomplete-block design. There is not even a pair of mutually orthogonal Latin squares of order 6, so square lattice designs for 36 treatments are available for 2 or 3 replicates only. Patterson and Williams (1976) used computer search to find a design for 36 treatments in 4 replicates of blocks of size 6. All pairwise treatment concurrences are in $\{0, 1, 2\}$. The value of its A-criterion μ_A is 0.836, which compares well with the unachievable upper bound of 0.840.
Bailey Treasure hunt 13/	59Bailey Treasure hunt 14/59

Chapter 2		Triple arrays
Triple arrays and sesqui-arrays.		Triple arrays were introduced independently by Preece (1966) and Agrawal (1966), and later named by McSorley, Phillips, Wallis and Yucas (2005). They are row–column designs with <i>r</i> rows, <i>c</i> columns and <i>v</i> letters, satisfying the following conditions.
	and sesqui-arrays.	(A1) There is exactly one letter in each tow-column intersection.(A2) No letter occurs more than once in any row or column.
		(A3) Each letter occurs k times, where $k > 1$ and $vk = rc$.
		(A4) The number of letters common to any row and column is <i>k</i> .
		(A5) The number of letters common to any two rows is
		the non-zero constant $c(k-1)/(r-1)$.
		(A6) The number of letters common to any two
Bailey	Treasure hunt	columns is the non-zero constant $r(k-1)/(c-1)$. ^{15/59} Bailey 16/59

A triple array with $r = 4$, $c = 9$, $v = 12$ and $k = 3$	Why triple arrays?
(A4) The number of letters common to any row and column is $k = 3$. (A5) The number of letters common to any two rows is the non-zero constant $c(k-1)/(r-1) = 6$. (A6) The number of letters common to any two columns is the non-zero constant $r(k-1)/(c-1) = 1$. Sterling and Wormald (1976) gave this triple array. $ \frac{D H F L E K I G J}{A K I B J G C L H} $ $ \frac{D H F L D B F K E C}{G E A H I B D C F} $	 (A4) The number of letters common to any row and column is k = 3. (A5) The number of letters common to any two rows is the non-zero constant c(k - 1)/(r - 1) = 6. (A6) The number of letters common to any two columns is the non-zero constant r(k - 1)/(c - 1) = 1. (A5) Rows are balanced with respect to letters. (A6) Columns are balanced with respect to letters. (A4) Rows and columns are orthogonal to each other after they have been adjusted for letters. If letters are blocks, rows are levels of treatment factor <i>T</i>1, columns are levels of treatment factor <i>T</i>2, and there is no interaction between <i>T</i>1 and <i>T</i>2, then this is a good design.
Bailey Treasure hunt 17/5	99Bailey Treasure hunt 18/59

My coauthors		Sesqui-arrays are a weakening of triple arrays	
Toma and Peter at Lir at Bee in At	s Nilson (left) Cameron (right) IStat 2018 dlewo, Poland Igust 2018	 Cameron and Nilson introduced the weaker concept of sesqui-array by dropping the condition on pairs of columns. They are row-column designs with <i>r</i> rows, <i>c</i> columns and <i>v</i> letters, satisfying the following conditions. (A1) There is exactly one letter in each row-column intersection. (A2) No letter occurs more than once in any row or column. (A3) Each letter occurs <i>k</i> times, where <i>k</i> > 1 and <i>vk</i> = <i>rc</i>. (A4) The number of letters common to any row and column is <i>k</i>. (A5) The number of letters common to any two rows is the non-zero constant <i>c</i>(<i>k</i> - 1)/(<i>r</i> - 1). 	
Bailey Treasure hunt	19/59	Bailey Treasure hunt	20/5

Chapter 3		Т	he story: Part I
			Consider designs with $n + 1$ rows, n^2 columns and $n(n + 1)$ letters. Triple arrays have been constructed for $n \in \{3, 4, 5\}$ by Agrawal (1966) and Sterling and Wormald (1976); for $n \in \{7, 8, 11, 13\}$ by McSorley, Phillips, Wallis and Yucas (2005). There are values of n , such as $n = 6$, for which a BIBD for n^2 treatments in $n(n + 1)$ blocks of size n does not exist.
How the new designs were discovered, part I.	new designs were discovered, part I.		By weakening triple array to sesqui-array, TN and PJC hoped to give a construction for all <i>n</i> .
			TN found a general construction, using a pair of mutually orthogonal Latin squares of order n . So this works for all positive integers n except for $n \in \{1, 2, 6\}$.
			This motivated PJC to find a sesqui-array for $n = 6$.
			Later, RAB found a simpler version of TN's construction, that needs a Latin square of order <i>n</i> but not orthogonal Latin squares. So $n = 6$ is covered. If this had been known earlier,
Bailey	Treasure hunt	21/59Bailey	PJC would not have found the nice design for $n = 6$.

Chapter 4	The Sylvester graph
Resolvable designs for 36 treatments in blocks of size 6.	The Sylvester graph Σ is a graph on 36 vertices with valency 5. The vertices can be thought of as the cells of a 6 × 6 grid. $\begin{array}{c c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline F & & & & & \\ \hline G & & & & & \\ \hline F & = & 12 34 56 13 25 46 14 26 35 15 24 36 16 23 45 \\ \hline G & = & 12 34 56 23 15 46 24 16 35 25 14 36 26 13 45 = \mathcal{F}^{(12)} \end{array}$
	Automorphisms: S_6 on rows and on columns at the same time; the outer automorphism of S_6 swaps rows with columns.
Bailey Treasure hunt 23/5	59Bailey Treasure hunt 24/59

Consquence II: association scheme	Our designs
If <i>a</i> is any vertex, the vertices at distance 2 from vertex <i>a</i> are precisely those vertices which are not in the starfish <i>S</i> (<i>a</i>) or the row containing <i>a</i> or the column containing <i>a</i> . Consequence The four binary relations:	* ^{<i>m</i>} galaxies of starfish from <i>m</i> columns, where $1 \le m \le 6$ R, * ^{<i>m</i>} all rows; galaxies of starfish from <i>m</i> columns C, * ^{<i>m</i>} all columns; galaxies of starfish from <i>m</i> columns R, C, * ^{<i>m</i>} all rows; all columns; galaxies of starfish from <i>m</i> columns,
 different vertices in the same row; different vertices in the same column; vertices joined by an edge in the Sylvester graph Σ; vertices at distance 2 in Σ 	If $m = 6$ then the design is partially balanced with respect to the association scheme just described and so we can easily calculate the canonical efficiency factors. Otherwise, we use computational algebra (GAP) to calculate them exactly.
So, for any incomplete-block design which is partially balanced with respect to this association scheme, the information matrix has five eigenspaces, which we know (in fact, they have	 The large group of automorphisms tell us that the design R, *^m has the same canonical efficiency factors as the design C, *^m;
dimensions 1, 5, 5, 9 and 16), so it is straightforward to calculate the eigenvalues and hence the canonical efficiency factors. Bailey Treasure hunt 33/59	 if we use the galaxies of starfish from <i>m</i> columns it does not matter which subset of <i>m</i> columns we use. Bailey Treasure hunt 34/59

Constructing a PB resolved design with 6 replicates	Constructing a PB resolved design with 7 replicates	
For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.	For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column. For the 7-th replicate, the blocks are the columns.	
concurrence = $\begin{cases} 2 & \text{for vertices joined by an edge} \\ 1 & \text{for vertices at distance 2} \\ 0 & \text{for vertices in the same row or column} \\ & \text{canonical efficiency factor} \parallel 1 \mid \frac{8}{2} \mid \frac{3}{4} \end{cases}$	$concurrence = \begin{cases} 2 & \text{for vertices joined by an edge} \\ 1 & \text{for vertices at distance 2} \\ 1 & \text{for vertices in the same column} \\ 0 & \text{for vertices in the same row.} \end{cases}$	
$\begin{array}{c c} \text{multiplicity} & \parallel 10 \mid 9 \mid 16 \end{array}$ The harmonic mean is $\mu_A = 0.8442$.	The hermonic mean is $\mu = 0.8507$	
The unachievable upper bound given by the non-existent square lattice design is $\mu_A = 0.8537$.	The unachievable upper bound given by the non-existent square lattice design is $A = 0.8571$.	
Bailey Treasure hunt	35/59Bailey Treasure hunt	36/59

Constructing a PB resolved design with 8 replicates	Values o	f μ_A for ou	ır desigi	าร			
For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column. For the 7-th replicate, the blocks are the columns. For the 8-th replicate, the blocks are the rows. $concurrence = \begin{cases} 2 & for vertices joined by an edge \\ 1 & otherwise \end{cases}$ $canonical efficiency factor \parallel \frac{11}{12} \mid \frac{7}{8} \mid \frac{13}{16} \\ multiplicity \parallel \frac{9}{9} \mid \frac{7}{10} \mid \frac{16}{16} \end{cases}$ The harmonic mean is $\mu_A = 0.8549$. The non-existent design consisting of a balanced design in 7 replicates with one more replicate adjoined would have $A = 0.8547$.	$-\frac{1}{3}$	R, C, $*^{r-2}$ 0.8235 0.8380 0.8453 0.8498 0.8498 0.8528 0.8549 ghted entries ntries corresp	C, * ^{<i>r</i>-1} 0.8341 0.8422 0.8473 0.8507 s correspond to d	* ^r 0.8285 0.8383 0.8442 ond to pa esigns w	HDP/ERW 1976 0.836 artially balance hich do not e	square lattice 0.8235 0.8400 0.8485 0.8537 0.8571 0.8547 ed designs xist.	
Bailey Treasure hunt	37/59Bailey			Treasure hunt			38/59

Chapter 5	Back to the sesqui-arrays
How the new designs were discovered, part II.	These wonderful designs are a fortunate byproduct of a wrong turning in the search for sesqui-arrays. How do we take the one with 7 replicates and turn its dual into a 7 × 36 sesqui-array with 42 letters?
Bailey Treasure hunt 39/59	Bailey Treasure hunt 40/59

The story: Part II	Forestry to the rescue
RAB: I am typing up some of these new designs. Is your sesqui-array for $n = 6$ written out explicitly? PJC: Not yet. I will just program GAP to do it for me. A bit later, PJC: Oh no! My construction does not work after all. Each column has the correct set of letters, but their arrangement in rows is wrong, because each row has some letters occurring 5 times.	Later, PJC: The only hope of putting this right is to permute the letters in each column. I need 6 permutations. Each fixes the first row and one other. The rest of each permutation gives a circle on the other 5 rows, and I want these circles to have every row following each other row exactly once. RAB: Easy peasy. That is a neighbour-balanced design for 6 treatments in 6 circular blocks of size 5. I made one of those for experiments in forestry 25 years ago.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
b b b b b b k i Bailey Treasure hunt 41/59 14/	Bailey Treasure hunt 42/55

How does that work then?	Chapter 6
$4 \xrightarrow{3}_{5 \xrightarrow{6}} 2 \qquad 4 \xrightarrow{1}_{5 \xrightarrow{5}} 3 \qquad 5 \xrightarrow{1}_{2 \xrightarrow{6}} 4$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	What happened next.
$ 1 2 3 4 5 6 \leftarrow$ sets of six columns	
* 1 2 3 4 5 6 \leftarrow sets of six letters	
1 * 1 1 1 1 1	
2 23 * 2 2 2 2	
3 34 3 * 3 3 3	
4 45 4 4 * 4 4	
5 56 5 5 5 * 5	
6 62 6 6 6 8	
Bailey Treasure hunt 43/5	Plailey Treasure hunt 44/55

Personal communication from Emlyn Williams				nother connection	
	I gave a talk about these designs in August 2017 at the meeting on <i>Latest advances in the theory and applications of</i> <i>design and analysis of experiments</i> in the Banff International Research Station in Canada.				
	They video all lectures, and make them available on the web.			I gave another talk about these designs in February 2018	
	Emlyn Williams learnt about this, and watched the video of my lecture.			in a seminar in St Andrews. As I was preparing the talk (the day before),	
	This motivated him to re-run that computer search from the 1970s with a more up-to-date version of his search program on a more up-to date computer.			I realised a connection with some other designs that I have studied, called semi-Latin squares.	
	Thus he found resolvable designs for 36 varieties in up to eight replicates of blocks of size six.				
	All concurrences are in $\{0, 1, 2\}$.				
	He emailed me these results in September 2017.				
Bailey	Treasure hunt	45/59	Bailey	Treasure hunt	46/59

Chapter 7	What is a semi-Latin square?
Semi-Latin squares.	Definition A $(n \times n)/s$ semi-Latin square is an arrangement of <i>ns</i> letters in n^2 blocks of size <i>s</i> which are laid out in a $n \times n$ square in such a way that each letter occurs once in each row and once in each column.
Bailey Treasure hunt 47/59	Bailey Treasure hunt 48/59

A $(6 \times 6)/2$ semi-Latin square	The semi-Latin square made from the galaxies of starfish centered on columns 3 and 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bailey Treasure hunt 49/59	Bailey Treasure hunt 50/59

Tro	ojan squares	Fro	From semi-Latin square to block design		
	Definition If a semi-Latin square is made by superposing <i>s</i> mutually orthogonal $n \times n$ Latin squares then it is called a Trojan square. A semi-Latin square does not have to be made by superposing Latin squares. Theorem If a Trojan square exists, then it is optimal among semi-Latin squares of that size. What are the optimal ones when $n = 6$?		 Suppose that we have a (n × n)/s semi-Latin square. Construction Write the varieties in an n × n square array. Each of the <i>ns</i> letters gives a block of <i>n</i> varieties. If the semi-Latin square is made by superposing <i>s</i> Latin squares then the block design is resolvable. 		
Bailey	Treasure hunt	51/59Bailey	Treasure hunt	52/59	

Good leads to good	What is known about good semi-Latin squares with $n = 6$?
Theorem If the block design has A-criterion μ_A and the semi-Latin square has A-criterion λ_A then $\frac{35}{\mu_A} = 6(6-s) + \frac{6s-1}{\lambda_A}.$ So maximizing μ_A is the same as maximizing λ_A (among semi-Latin squares which are superpositions of Latin squares, if we insist on resolvable designs).	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Bailey Treasure hunt 53/59	Bailey partially balanced do not exist 54/5

Semi-Latin square to block design: again	Chapter 8
Just as with the designs made from the Sylvester graph, if we make a block design from a semi-Latin square then we have the option of including another replicate whose blocks are the rows and another replicate whose blocks are the columns. As before, these two special replicates give us better designs than just using a semi-Latin square with 12 more letters.	Comparison of designs.
Bailey Treasure hunt	5/59 Bailey Treasure hunt 56/59

Comparing the values of μ_A for the new designs				v desigi	re any of the new designs the sa	me?	
For $r = 2$ and square lattice For $4 \le r \le 7$ factors μ_A not For $r = 8$, the design with o	r = 3 the designs. the designs i far below th y all do bette ne replicate c RAB/PJC R, C, * ^{r-2}	signs in a n all thre e unachie r than a b luplicated LHS +R, C	ll three of e series evable u palanced d. ERW	of the new have effic pper bou square l square lattice	series are ency d. tice	Two block designs are isomorphic if one can be converted into the other a permutation of varieties and a perm If two designs are isomorphic then their efficiency factors are the sa	by nutation of blocks. me,
4	0.8380	0.8393	0.8393	0.8400		but the converse may not be true.	
5	0.8453	0.8456	0.8464	0.8485			
6	0.8498	0.8501	0.8510	0.8537			
7	0.8528	0.8528	0.8542	0.8571			
8	0.8549	0.8549	0.8549	0.8547			
Bailey		Treasure hunt	t		57/59 B	Treasure hunt	58/59

59/59

Are any of these designs the same?

	RAB/PJC	LHS		square
r	R, C, $*^{r-2}$	+R, C	ERW	lattice
4	0.8380	0.8393	0.8393	0.8400
5	0.8453	0.8456	0.8464	0.8485
6	0.8498	0.8501	0.8510	0.8537
7	0.8528	0.8528	0.8542	0.8571
8	0.8549	0.8549	0.8549	0.8547

It is possible that the LHS and ERW designs for r = 4 are isomorphic, and that the RAB/PJC and LHS designs for r = 7are isomorphic. Otherwise, for $4 \le r \le 7$, the efficiency factors of the three new designs differ slightly, so no pair of the new designs are isomorphic.

For r = 8, all three new designs have the same efficiency factor. Their concurrence matrices are the same up to permutation of the treatments. Their automorphism groups have order 1440, 144 and 1 respectively, so no pair are isomorphic.

Treasure hunt