

| Chapter 1 | Resolvable block designs |
| :--- | :--- | :--- |
| Square lattice designs. | |
| Trials of new crop varieties typically have a large number of | |
| varieties. | |
| Even at a well-run testing centre, | |
| inhomogeneity among the plots (experimental units) makes it | |
| desirable to group the plots into homogeneous blocks, | |
| usually too small to contain all the varieties. | |
| For management reasons, it is often convenient if the blocks | |
| can themselves be grouped into replicates, in such a way that | |
| each variety occurs exactly once in each replicate. Such a block | |
| design is called resolvable. | |
| (Some people call these resolved designs. | |
| Williams (1977) called them generalized lattice designs.) | |

Square lattice designs for n^{2} varieties in $r n$ blocks of n	Good property I: Last-minute changes or area damage
Square lattice designs for n^{2} varieties, arranged in r replicates, each replicate consisting of n blocks of size n. Construction 1. Write the varieties in an $n \times n$ square array. 2. The blocks of Replicate 1 are given by the rows; the blocks of Replicate 2 are given by the columns. 3. If $r=2$ then STOP. 4. Otherwise, write down $r-2$ mutually orthogonal Latin squares of order n. 5. For $i=3$ to r, the blocks of Replicate i correspond to the letters in Latin square $i-2$.	Adding or removing a replicate to/from a square lattice design gives another square lattice design, which can permit last-minute changes in the number of replicates used. If the replicates are large natural areas that might be damaged (for example, nearby crows eat all the crop, or heavy rain starts before the last replicate is harvested) then the loss of that replicate leaves another square lattice design.

Good property II: Nearly equal concurrences

The concurrence of two varieties is the number of blocks in which they both occur.
It is widely believed that good designs have all concurrences as equal as possible, and so this condition is often used in the search for good designs.
In square lattice designs, all concurrences are equal to 0 or 1 .
If $r=n+1$ then all concurrences are equal to 1 and so the design is balanced.

Efficiency factors and optimality

Given an incomplete-block design for a set \mathcal{T} of varieties in which all blocks have size k and all treatments occur r times, the $\mathcal{T} \times \mathcal{T}$ concurrence matrix Λ has (i, j)-entry equal to the number of blocks in which treatments i and j both occur and the scaled information matrix is $I-(r k)^{-1} \Lambda$.
The constant vectors are in the null space of the scaled information matrix.
The eigenvalues for the other eigenvectors are called canonical efficiency factors: the larger the better.
Let μ_{A} be the harmonic mean of the canonical efficiency factors. The average variance of the estimate of a difference between two varieties in this design is

$$
\frac{1}{\mu_{A}} \times \begin{aligned}
& \text { the average variance in an experiment } \\
& \text { with the same resources but no blocks }
\end{aligned}
$$

So $\mu_{A} \leq 1$, and a design maximizing μ_{A}, for given values of r and k and number of varieties, is A-optimal.

Chapter 2		Triple arrays	
Triple arrays and sesqui-arrays.		Triple arrays were introduced independently by Preece (1966) and Agrawal (1966), and later named by McSorley, Phillips, Wallis and Yucas (2005). They are row-column designs with r rows, c columns and v letters, satisfying the following conditions. (A1) There is exactly one letter in each row-column intersection. (A2) No letter occurs more than once in any row or column. (A3) Each letter occurs k times, where $k>1$ and $v k=r c$. (A4) The number of letters common to any row and column is k. (A5) The number of letters common to any two rows is the non-zero constant $c(k-1) /(r-1)$. (A6) The number of letters common to any two columns is the non-zero constant $r(k-1) /(c-1)$.	

Chapter 3		The story: Part I
How the new designs were discovered, part I.		Consider designs with $n+1$ rows, n^{2} columns and $n(n+1)$ letters. Triple arrays have been constructed for $n \in\{3,4,5\}$ by Agrawal (1966) and Sterling and Wormald (1976); for $n \in\{7,8,11,13\}$ by McSorley, Phillips, Wallis and Yucas (2005). There are values of n, such as $n=6$, for which a BIBD for n^{2} treatments in $n(n+1)$ blocks of size n does not exist. By weakening triple array to sesqui-array, TN and PJC hoped to give a construction for all n. TN found a general construction, using a pair of mutually orthogonal Latin squares of order n. So this works for all positive integers n except for $n \in\{1,2,6\}$. This motivated PJC to find a sesqui-array for $n=6$. Later, RAB found a simpler version of TN's construction, that needs a Latin square of order n but not orthogonal Latin squares. So $n=6$ is covered. If this had been known earlier, PJC would not have found the nice design for $n=6$.

The Sylvester graph and its starfish

The Sylvester graph Σ has a transitive group of automorphisms
(permutations of the vertices which take edges to edges),
so it looks the same from each vertex.

At each vertex a, the starfish $S(a)$ defined by the 5 edges at a
has 6 vertices, one in each row and one in each column.

Bailey

More properties of the Sylvester graph

Vertices at distance 2 from a are all in rows and columns
different from a.
The Sylvester graph has no triangles or quadrilaterals.
This implies that, if a is any vertex, the vertices at distance 2
from vertex a are precisely those vertices which are not in the
starfish $S(a)$ or the row containing a or the column containing a.
Treasurehunt

Consquence II: association scheme

If a is any vertex, the vertices at distance 2 from vertex a are precisely those vertices which are not in the starfish $S(a)$ or the row containing a or the column containing a.
Consequence
The four binary relations:

- different vertices in the same row;
- different vertices in the same column;
- vertices joined by an edge in the Sylvester graph Σ;
- vertices at distance 2 in Σ
form an association scheme.
So, for any incomplete-block design which is partially balanced with respect to this association scheme, the information matrix has five eigenspaces, which we know (in fact, they have dimensions $1,5,5,9$ and 16), so it is straightforward to calculate the eigenvalues and hence the canonical efficiency factors.

Our designs

$*^{m}$ galaxies of starfish from m columns, where $1 \leq m \leq 6$
$\mathrm{R}, *^{m}$ all rows; galaxies of starfish from m columns
C, $*^{m}$ all columns; galaxies of starfish from m columns
$\mathrm{R}, \mathrm{C}, *^{m}$ all rows; all columns; galaxies of starfish from m columns,
If $m=6$ then the design is partially balanced
with respect to the association scheme just described and so we can easily calculate the canonical efficiency factors. Otherwise, we use computational algebra (GAP) to calculate them exactly.
The large group of automorphisms tell us that

- the design $\mathrm{R}, *^{m}$ has the same canonical efficiency factors as the design $\mathrm{C}, *^{m}$;
- if we use the galaxies of starfish from m columns it does not matter which subset of m columns we use.

Constructing a PB resolved design with 6 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.
concurrence $= \begin{cases}2 & \text { for vertices joined by an edge } \\ 1 & \text { for vertices at distance } 2 \\ 0 & \text { for vertices in the same row or column } .\end{cases}$

$$
\begin{array}{c||c|c|c}
\text { canonical efficiency factor } & 1 & \frac{8}{9} & \frac{3}{4} \\
\text { multiplicity } & 10 & 9 & 16
\end{array}
$$

The harmonic mean is $\mu_{A}=0.8442$.
The unachievable upper bound given by the non-existent square lattice design is $\mu_{A}=0.8537$.

Constructing a PB resolved design with 7 replicates

For each column, make a replicate whose blocks are the 6 starfish whose centres are in that column.
For the 7-th replicate, the blocks are the columns.

$$
\text { concurrence }= \begin{cases}2 & \text { for vertices joined by an edge } \\ 1 & \text { for vertices at distance } 2 \\ 1 & \text { for vertices in the same column } \\ 0 & \text { for vertices in the same row }\end{cases}
$$

$$
\begin{array}{c||c|c|c|c}
\text { canonical efficiency factor } & 1 & \frac{19}{21} & \frac{6}{7} & \frac{11}{14} \\
\text { multiplicity } & 5 & 9 & 5 & 16
\end{array}
$$

The harmonic mean is $\mu_{A}=0.8507$.
The unachievable upper bound given by the non-existent square lattice design is $A=0.8571$.

Chapter 7	What is a semi-Latin square?
Semi-Latin squares.	Definition A $(n \times n) / s$ semi-Latin square is an arrangement of $n s$ letters in n^{2} blocks of size s which are laid out in a $n \times n$ square in such a way that each letter occurs once in each row and once in each column.
Batiley	

Are any of these designs the same?

r	$\mathrm{RAB} / \mathrm{PJC}$ $\mathrm{R}, \mathrm{C}, *^{r-2}$	LHS $+\mathrm{R}, \mathrm{C}$	ERW	square lattice
4	0.8380	0.8393	0.8393	0.8400
5	0.8453	0.8456	0.8464	0.8485
6	0.8498	0.8501	0.8510	0.8537
7	0.8528	0.8528	0.8542	0.8571
8	0.8549	0.8549	0.8549	0.8547

It is possible that the LHS and ERW designs for $r=4$ are isomorphic, and that the RAB/PJC and LHS designs for $r=7$ are isomorphic. Otherwise, for $4 \leq r \leq 7$, the efficiency factors of the three new designs differ slightly, so no pair of the new designs are isomorphic.
For $r=8$, all three new designs have the same efficiency factor. Their concurrence matrices are the same up to permutation of the treatments. Their automorphism groups have order 1440, 144 and 1 respectively, so no pair are isomorphic.
\qquad

