
From Rothamsted to Northwick Park: designing
experiments to improve the lot of humanity

R. A. Bailey
University of St Andrews

SUMS
14 October 2020

Bailey SUMS 1/45



A few experiments

I Compare daily polypill with “do nothing”
to find out which gives lower risk of stroke.

I Compare 20 varieties of wheat
to find out which gives the most grain of bread-making
quality.

I Compare 3 coatings for masonry
to find out which makes it last longest in city pollution.

I Precision measurement of the electric dipole moment of
the electron, varying the levels of 9 factors (laser frequency,
amplitudes of two pulses, . . . ).

Experiments are important in medicine, agriculture,
engineering, “pure” physics, . . . , and many, many areas of
enquiry.
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Bias: I

Suppose that we are trying to estimate an unknown number z

(such as how much more grain of bread-making quality,
in tonnes/hectare, is produced, on average, by variety A than
variety B).

Our procedure is said to be unbiased if the average of all our
possible estimates is the true value z.

We aim to use unbiased estimation always.

But being right on average is not good enough . . .
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Variance: I

We will not get exactly the same estimate if we repeat the
experiment, so our estimate has some variance.

The smaller the variance, the closer together are the possible
estimates.

So, if our procedure is unbiased, then
the smaller the variance, the closer is our estimate to the true
value z (usually).

In fact, if our procedure is unbiased, the variance is V and our
estimated value is e, then

e− 3
√

V ≤ z ≤ e + 3
√

V

almost all the time.

The smaller the variance, the closer is our estimate to the true
value.

We aim to make variance small.
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Some criteria for designing an experiment

I remove bias

I make variance as small as possible
I stay within constraints of cost, feasibility, . . . ,

but an
experiment too small to find out anything may be a waste
of resources.

Why does this matter?

Better quality experiments enable us to make better quality
decisions to make better use of Earth’s resources and to save
lives.
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Bias II: randomization

One way to avoid bias is to randomize:

write down a systematic plan then permute it by a
randomly-chosen permutation.
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Lanarkshire milk experiment: early 20th century

Treatments: extra milk rations or not.
These should have been randomized to the children within
each school.
The teachers decided to give the extra milk rations to those
children who were most undernourished.
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Rothamsted Experimental Station (Harpenden)

This was founded by Sir John Bennet Lawes in 1843.

trees→

Broadbalk

I worked in the Statistics Department there from 1981 to 1990.
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An experiment at Rothamsted that I designed
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Variance II: replication

Suppose that we have N plots available
and we want to compare varieties A and B.

If variety A is planted on n plots,
and variety B is planted on m plots, where n + m = N,
and the variance of each yield is σ2, then the variance of the
estimate of the difference between A and B is

σ2
(

1
n
+

1
m

)
= σ2

(
n + m

nm

)
= σ2

(
N

nm

)
.

Theorem

If the total n + m is fixed, the value of
1

nm
is smallest when

|m− n| ≤ 1.
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Variance III: a demonstration when N = 20

4 8 12 16 20
0
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n
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Variance IV: a proof

Theorem

If the total n + m is fixed, the value of
1

nm
is smallest when

|m− n| ≤ 1.

Proof.
Consider changing m to m− 1 and n to n + 1.

new variance is smaller ⇐⇒ 1
(n + 1)(m− 1)

<
1

nm
⇐⇒ (n + 1)(m− 1) > nm
⇐⇒ nm + m− n− 1 > nm
⇐⇒ m− n > 1.

If m− n ≥ 2 (or n−m ≥ 2), we can change the replications to
get a design with smaller variance.
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Variance V: many varieties

If we have varieties 1, 2, . . . , v,
then we want to minimize the average of the variance of the
estimate of the difference between varieties i and j, for
1 ≤ i < j ≤ v.

This is achieved by making all the replications as equal as
possible.

Bailey SUMS 13/45



Variance V: many varieties

If we have varieties 1, 2, . . . , v,
then we want to minimize the average of the variance of the
estimate of the difference between varieties i and j, for
1 ≤ i < j ≤ v.

This is achieved by making all the replications as equal as
possible.

Bailey SUMS 13/45



Blocking

We have 6 varieties to compare in this field.
How do we avoid bias?

.......................

.....................
...................
................
..............
............. .......... ............. ................ ................... ...................... ......................... ............................ .................. ............... ............. ........... ........ .................
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Partition the experimental units into homogeneous blocks
and apply each treatment to one plot in each block.
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R. A. Fisher, statistician at Rothamsted 1919–1933

I randomization
I replication
I blocking

1952 portrait by
Barrington Brown,
reproduced by
permission of
the Fisher Memorial
Trust
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Incomplete blocks

What do we do if the blocks are too small for each one to
contain all the treatments?

Then the unbiased estimates with the smallest variance are no
longer the differences between the simple treatment means.
There is a complicated formula for the average pairwise
variance. It depends on the design as well as on the
replications.

A design for v treatments in b blocks of size k is balanced if
there is some constant λ such that every pair of treatments
occur together in precisely λ blocks.
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Two designs with v = 7, b = 7, k = 3: columns are blocks

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2

balanced (λ = 1) non-balanced
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Results about balanced incomplete-block designs

v = number of treatments b = number of blocks
k = block size

Theorem

1. In a BIBD,

1.1 every treatment occurs in r blocks, where vr = bk;
1.2 r(k− 1) = (v− 1)λ;
1.3 v ≤ b.

2. BIBDs do not exist for all values of v, b and k.
3. If there is a BIBD, then it gives the minimum average variance of

pairwise differences.
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Kirkman’s Schoolgirls Problem (1847)

There are 15 schoolgirls in a certain class.
Every day, they go for a walk, and the teacher insists that they
walk in groups of size 3.
Arrange the girls in groups for a week (7 days) in such a way
that each pair of girls walk together in a group exactly once.

This is a BIBD with v = 15, b = 5× 7 = 35 and k = 3,
with the extra property that there are five whole groups per
day.

BIBDs have been studied extensively by pure mathematicians
as well as statisticians.

Homework
Solve Kirkman’s Problem for 15 schoolgirls.
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From Rothamsted to London

In 1991 I left Rothamsted and joined the University of London.

I continued to help with the design of experiments in many
areas, such as
I human–computer interaction
I biomaterials
I two-phase variety trials
I biodiversity in freshwater systems
I genomics
I a cross-over grazing trial
I the effect of plant spacing on insect populations.
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New Delhi, December 2006
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Northwick Park: the TeGenero trial

First-in-Human trial of a monoclonal antibody on healthy
volunteers, March 2006: 4 cohorts of 8 volunteers each.

Cohort TGN1412 Placebo
Dose

mg/kg
body-weight

Number of
Subjects

Number of
Subjects

1 0.1 6 2
2 0.5 6 2
3 2.0 6 2
4 5.0 6 2
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What happened to Cohort 1 on 13 March 2006

Healthy Randomized Time of Time of
Volunteer to intravenous transfer to

administration critical care
A TGN1412 8.4mg 0800 2400
B Placebo 0810
C TGN1412 6.8mg 0820 2350
D TGN1412 8.8mg 0830 0030
E TGN1412 8.2mg 0840 2040
F TGN1412 7.2mg 0850 0050
G TGN1412 8.2mg 0900 0100
H Placebo 0910
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The Royal Statistical Society’s Working Party on
Statistical Issues in First-in-Man Studies: Membership

Dipti Amin, Senior Vice-President, Quintiles
R. A. Bailey, Professor of Statistics, QMUL
Sheila Bird, Principal Scientist/Statistician, MRC Biostatistics
Unit
Barbara Bogacka, Reader in Probability and Statistics, QMUL
Peter Colman, Senior Consultant Statistician, Pfizer
Andrew Garrett, Vice-President Statistics, Quintiles
Andrew Grieve, Professor of Medical Statistics, KCL
Peter Lachmann, FRS, Emeritus Professor of Immunology,
Cambridge
Stephen Senn, Professor of Statistics, Glasgow

SB: Please join us. RAB: I’m too busy. SB: This is very
important. RAB: I know about agricultural experiments, not
clinical trials. SB: Your experience will be valuable.
RAB: My colleague BB knows about clinical trials; ask her.
SB: I will, but we want you too.
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The Royal Statistical Society’s Working Party on
Statistical Issues in First-in-Man Studies: Report

Published free-standing and online in March 2007, then in
Journal of the Royal Statistical Society, Series A 170 (2007), 517–579.

Recommendations include
I generic issues

I risk (quantification; novel type of medicine; public debate)
I sharing information on adverse events (usable database)
I proper interval between dosing subjects

(sudden adverse effects→ do not dose further subjects;
delayed adverse effects→ ill subjects can be treated one by
one)

I preclinical / clinical interface
I protocol
I sequential choice of dose
I allocation of ordinal doses to cohorts.
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Planned analysis of the TeGenero trial

Cohort TGN1412 Placebo
Dose Number Number

1 1 6 2
2 2 6 2
3 3 6 2
4 4 6 2

If all responses are uncorrelated with variance σ2 then
Variance (dose i− placebo) in cohort i is

( 1
6 +

1
2

)
σ2 = 2

3 σ2.

From the protocol: “data of subjects having received placebo
will be pooled in one group for analyses.”

Variance (dose i− placebo) is
( 1

6 +
1
8

)
σ2 = 7

24 σ2 if there are no
cohort effects.

Variance (dose i− dose j) is
( 1

6 +
1
6

)
σ2 = 1

3 σ2 if there are no
cohort effects.
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Are there cohort effects?

I Different types of people can volunteer at different times.

I There may be changes in the ambient conditions,
eg temperature, pollutants, pollens.

I The staff running the trial, or analysing the samples, may
change.

I Protocols for using subsidiary equipment may change.
I Halo effect among volunteers:

if one reports nausea then they all may do so.
I Halo effect among staff:

if they see symptoms in one volunteer, they expect them in
others.

There have been many trials, in many topics, where, with
hindsight, cohort effects swamp treatment effects.
The Experimental Medicines Group of the Association of the
British Pharmaceutical Industry (ABPI) says that trials should
always be designed on the assumption that there will be cohort
effects.
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if they see symptoms in one volunteer, they expect them in
others.

There have been many trials, in many topics, where, with
hindsight, cohort effects swamp treatment effects.
The Experimental Medicines Group of the Association of the
British Pharmaceutical Industry (ABPI) says that trials should
always be designed on the assumption that there will be cohort
effects.Bailey SUMS 27/45



Analysis of the TeGenero trial with cohort effects

Cohort TGN1412 Placebo
Dose Number Number

1 1 6 2
2 2 6 2
3 3 6 2
4 4 6 2

Variance (dose i− placebo) in cohort i =
(

1
6
+

1
2

)
σ2 =

2
3

σ2.

Estimator of (dose i− dose j) =
[estimator of (dose i− placebo) in cohort i]−
[estimator of (dose j− placebo) in cohort j].

So variance (dose i− dose j) =
(

2
3
+

2
3

)
σ2 =

4
3

σ2.
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Senn’s proposed design

Cohort TGN1412 Placebo
Dose Number Number

1 1 4 4
2 2 4 4
3 3 4 4
4 4 4 4

Variance (dose i− placebo) in cohort i =
(

1
4
+

1
4

)
σ2 =

1
2

σ2 <
2
3

σ2.

So variance (dose i− dose j) =
(

1
2
+

1
2

)
σ2 = σ2 <

4
3

σ2.

The TeGenero design is inadmissible because everything can be
estimated, from the same resources, with smaller variance, by
another design.

Bailey SUMS 29/45
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Dose-escalation trials: standard designs

There are n doses, with dose 1 < dose 2 < · · · < dose n.

0 denotes the placebo.

There are n cohorts of m subjects each.

Cohort 1 subjects may receive only dose 1 or placebo.

In Cohort i, some subjects receive dose i;
no subject receives dose j if j > i.

Put ski = number of subjects who get dose i in cohort k. Then

ski > 0 if i = k
ski = 0 if i > k.
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Dose-escalation trials: standard designs

There are n doses, with dose 1 < dose 2 < · · · < dose n.

0 denotes the placebo.

There are n cohorts of m subjects each.

Cohort 1 subjects may receive only dose 1 or placebo.

In Cohort i, some subjects receive dose i;
no subject receives dose j if j > i.

Put ski = number of subjects who get dose i in cohort k. Then

ski > 0 if i = k
ski = 0 if i > k.

Bailey SUMS 30/45



Dose-escalation trials: standard designs

There are n doses, with dose 1 < dose 2 < · · · < dose n.

0 denotes the placebo.

There are n cohorts of m subjects each.

Cohort 1 subjects may receive only dose 1 or placebo.

In Cohort i, some subjects receive dose i;
no subject receives dose j if j > i.

Put ski = number of subjects who get dose i in cohort k. Then

ski > 0 if i = k
ski = 0 if i > k.

Bailey SUMS 30/45



Dose-escalation trials: standard designs

There are n doses, with dose 1 < dose 2 < · · · < dose n.

0 denotes the placebo.

There are n cohorts of m subjects each.

Cohort 1 subjects may receive only dose 1 or placebo.

In Cohort i, some subjects receive dose i;
no subject receives dose j if j > i.

Put ski = number of subjects who get dose i in cohort k. Then

ski > 0 if i = k
ski = 0 if i > k.

Bailey SUMS 30/45



Scaled variance

Assess designs by looking at the pairwise variances.

If we double the number of subjects getting each dose in each
cohort, then all variances are divided by 2. We want to know
which pattern of design is good irrespective of the number of
subjects.

If doses could be equally replicated within each cohort, then
each pairwise variance would be

2(n + 1)σ2

number of observations

so define the scaled variance vij to be

Variance (dose i− dose j)× number of observations
2(n + 1)σ2 .
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Textbook design

Aim:
I only doses 0 and k in cohort k
I equal replication overall.

ski =



m
n + 1

if i = 0

nm
n + 1

if 0 < i = k

0 otherwise.

Example: n = 4, m = 10

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

v0i =
n + 1

2
vij = n + 1
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Textbook design

Aim:
I only doses 0 and k in cohort k
I equal replication overall.

ski =



m
n + 1

if i = 0

nm
n + 1

if 0 < i = k

0 otherwise.

Example: n = 4, m = 10

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

v0i =
n + 1

2
vij = n + 1

Bailey SUMS 32/45



Textbook design

Aim:
I only doses 0 and k in cohort k
I equal replication overall.

ski =



m
n + 1

if i = 0

nm
n + 1

if 0 < i = k

0 otherwise.

Example: n = 4, m = 10

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

v0i =
n + 1

2
vij = n + 1

Bailey SUMS 32/45



Textbook design

Aim:
I only doses 0 and k in cohort k
I equal replication overall.

ski =



m
n + 1

if i = 0

nm
n + 1

if 0 < i = k

0 otherwise.

Example: n = 4, m = 10

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

v0i =
n + 1

2
vij = n + 1

Bailey SUMS 32/45



Senn’s design

Aim:
I only doses 0 and k in cohort k
I minimize variances for comparisons with dose 0 if there

are cohort effects.

ski =



m
2

if i = 0

m
2

if 0 < i = k

0 otherwise.

Example: n = 4, m = 8

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 4 0 4 0 0
Cohort 3 4 0 0 4 0
Cohort 4 4 0 0 0 4

v0i =
2n

n + 1
vij =

4n
n + 1
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Lessons from experience with block designs: I

The design is effectively a block design, with the cohorts as
blocks.

Principle

In each cohort, no treatment should be allocated to more than half of
the subjects.

Principle

Each cohort should have as many different treatments as possible.
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Lessons from experience with block designs: I

The design is effectively a block design, with the cohorts as
blocks.

Principle

In each cohort, no treatment should be allocated to more than half of
the subjects.

Principle

Each cohort should have as many different treatments as possible.

Bailey SUMS 34/45



Lessons from experience with block designs: I

The design is effectively a block design, with the cohorts as
blocks.

Principle

In each cohort, no treatment should be allocated to more than half of
the subjects.

Principle

Each cohort should have as many different treatments as possible.

Bailey SUMS 34/45



Proposed “uniform halving” designs

Aim:
I make pairwise variances lower than in other designs,

whether or not there are cohort effects.

ski =


m
2

if i = k

nonzero if 0 ≤ i < k
0 otherwise.

In Cohort 1:
m
2

subjects get dose 1;
m
2

subjects get placebo.

In Cohort k:
m
2

subjects get dose k; remaining subjects are

allocated as equally as possible to treatments 0 to k− 1, with
larger values given to make the ‘replication so far’ as equal as
possible.
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Proposed “uniform halving” designs

Aim:
I make pairwise variances lower than in other designs,

whether or not there are cohort effects.

ski =


m
2

if i = k

nonzero if 0 ≤ i < k
0 otherwise.

In Cohort 1:
m
2

subjects get dose 1;
m
2

subjects get placebo.

In Cohort k:
m
2

subjects get dose k; remaining subjects are

allocated as equally as possible to treatments 0 to k− 1, with
larger values given to make the ‘replication so far’ as equal as
possible.

Bailey SUMS 35/45



Proposed “uniform halving” designs

Aim:
I make pairwise variances lower than in other designs,

whether or not there are cohort effects.

ski =


m
2

if i = k

nonzero if 0 ≤ i < k
0 otherwise.

In Cohort 1:
m
2

subjects get dose 1;
m
2

subjects get placebo.

In Cohort k:
m
2

subjects get dose k; remaining subjects are

allocated as equally as possible to treatments 0 to k− 1, with
larger values given to make the ‘replication so far’ as equal as
possible.

Bailey SUMS 35/45



Example of a uniform halving design

Example: n = 4, m = 8

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 2 2 4 0 0
Cohort 3 1 1 2 4 0
Cohort 4 1 1 1 1 4

The scaled variances vij have to be calculated numerically.
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Average scaled pairwise variance
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Average scaled pairwise variance: continued
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Average scaled pairwise variance: continued
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Lessons from experience with block designs: II

In the standard designs, the highest dose has all of its subjects
in the final cohort.

In ordinary block designs, you would never limit any treatment
to just one block.

Principle

There should be one more cohort than there are doses, so that every
dose can occur in at least two cohorts.
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Dose-escalation trials: extended designs

There are n doses, with dose 1 < dose 2 < · · · < dose n.

0 denotes the placebo.

There are n + 1 cohorts of m subjects each.

Cohort 1 subjects may receive only dose 1 or placebo.

In Cohort i, for 2 ≤ i ≤ n, some subjects receive dose i;
no subject receives dose j if j > i.

In Cohort n + 1, any dose, or placebo, may be used.
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Extended Senn design

In the final cohort,
compensate for the previous over-replication of placebo.

sn+1,i =


0 if i = 0

m
n

otherwise

Example: n = 4, m = 8

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 4 0 4 0 0
Cohort 3 4 0 0 4 0
Cohort 4 4 0 0 0 4
Cohort 5 0 2 2 2 2

v0i =
2(n2 + 4)
n(n + 4)

vij =
4n

n + 4
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Extension of the uniform halving design

About half the subjects in the final cohort are equally split
between all treatments,
the others are allocated to make the overall replications as equal
as possible, with any inequalities favouring the higher doses.

Example: n = 4, m = 8

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 2 2 4 0 0
Cohort 3 1 1 2 4 0
Cohort 4 1 1 1 1 4

1 1 1 1 1
1

1 1
Cohort 5 1 1 1 2 3
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Average scaled pairwise variance: continued (again)
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Two designs for 4 doses using 40 subjects

Numbers of subjects Actual pairwise variances/σ2

Std
TB

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

1 2 3 4
0 0.625 0.625 0.625 0.625
1 1.250 1.250 1.250
2 1.250 1.250
3 1.250

average 1.00

Ext
UH

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 2 2 4 0 0
Cohort 3 1 1 2 4 0
Cohort 4 1 1 1 1 4
Cohort 5 1 1 1 2 3

1 2 3 4
0 0.222 0.285 0.348 0.370
1 0.285 0.348 0.370
2 0.330 0.378
3 0.375

average 0.33

Bailey SUMS 44/45



Two designs for 4 doses using 40 subjects

Numbers of subjects Actual pairwise variances/σ2

Std
TB

Dose 0 1 2 3 4
Cohort 1 2 8 0 0 0
Cohort 2 2 0 8 0 0
Cohort 3 2 0 0 8 0
Cohort 4 2 0 0 0 8

1 2 3 4
0 0.625 0.625 0.625 0.625
1 1.250 1.250 1.250
2 1.250 1.250
3 1.250

average 1.00

Ext
UH

Dose 0 1 2 3 4
Cohort 1 4 4 0 0 0
Cohort 2 2 2 4 0 0
Cohort 3 1 1 2 4 0
Cohort 4 1 1 1 1 4
Cohort 5 1 1 1 2 3

1 2 3 4
0 0.222 0.285 0.348 0.370
1 0.285 0.348 0.370
2 0.330 0.378
3 0.375

average 0.33

Bailey SUMS 44/45



Summary

I Remove bias by

I identifying suitable blocks and using them in the design
and in the analysis;

I randomizing appropriately to remove unknown sources of
bias.

I Reduce variance by choosing the best combination of
design and replications.

I There continue to be new challenges in the design of
experiments.

I Don’t be afraid to transfer design principles from one area
of science to another.
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