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From graph to partition

Suppose that Γ is a (simple, undirected) graph with (finite)
vertex-set Ω.

This defines a partition ΠΓ of Ω×Ω into three
parts (unless Γ is either complete or null).

diag(Ω) = {(ω, ω) : ω ∈ Ω}
{(α, β) : (α, β) is an edge of Γ}
{(α, β) : α 6= β and (α, β) is not an edge of Γ}

The corresponding Ω×Ω square matrices
(with all entries equal to 1 or 0) are I, AΓ and J−AΓ − I,
where I is the identity matrix, AΓ is the adjacency matrix of Γ,
and J is the all-1 matrix.
Let AΓ be the set of real linear combinations of these matrices.
Then AΓ is closed under matrix multiplication if and only if the
graph Γ is strongly regular.
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Generalize to other partitions of Ω×Ω

Let W be any subset of Ω×Ω. We generalize the idea of
adjacency matrix by writing AW for the Ω×Ω matrix with

AW(α, β) =

{
1 if (α, β) ∈ W
0 otherwise.

Put W> = {(α, β) : (β, α) ∈ W}.

Then AW> = A>W.

If Π is a partition of Ω×Ω, let AΠ be the set of real linear
combinations of the matrices AW for all parts W of Π.

We are going to consider three conditions (and their variants)
that Π might satisfy.
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Conditions on a partition Π of Ω×Ω

(C1) If W is a part of the partition Π, then so is W>.
(Closure under transposition.)

(C2) If W is a part of Π, then either W ⊆ diag(Ω) or
W ∩ diag(Ω) = ∅.
(The diagonal is special.)
(The corresponding subsets of Ω are called fibres.)

(C3) If W and X are parts of Π, then AWAX ∈ AΠ.
(AΠ is closed under matrix multiplication.)

Variants of these conditions.
(C1+) If W is a part of the partition Π, then W = W>.
(C2+) diag(Ω) is a single class of the partition Π.
(C3−) If W and X are parts of Π, then AWAX + AXAW ∈ AΠ.

(AΠ is closed under Jordan multiplication.)
Π is a coherent configuration if (C1), (C2) and (C3) are satisfied.
Π is an association scheme if (C1+), (C2+) and (C3) are
satisfied.
Π is an Jordan scheme if (C1+), (C2) and (C3−) are satisfied.
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The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.
So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;
and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.
Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.

So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;
and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.
Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.
So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;

and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.
Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.
So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;
and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.
Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.
So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;
and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.

Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



The partial order on partitions of Ω×Ω

If Φ and Ψ are two partitions of Ω×Ω then Φ 4 Ψ
(Φ refines Ψ) if each part of Φ is contained in a single part of Ψ.
Also, Φ ≺ Ψ if Φ 4 Ψ and Φ 6= Ψ.

Definition
The infimum, or meet, of partitions Ψ1 and Ψ2
is the partition Ψ1 ∧Ψ2 each of whose parts is
a non-empty intersection of a part of Ψ1 and a part of Ψ2.
So Ψ1 ∧Ψ2 4 Ψ1 and Ψ1 ∧Ψ2 4 Ψ2;
and if Φ 4 Ψ1 and Φ 4 Ψ2 then Φ 4 Ψ1 ∧Ψ2.

Definition
The supremum, or join, of partitions Ψ1 and Ψ2 is the partition
Ψ1 ∨Ψ2 which satisfies Ψ1 4 Ψ1 ∨Ψ2 and Ψ2 4 Ψ1 ∨Ψ2
and if Ψ1 4 Φ and Ψ2 4 Φ then Ψ1 ∨Ψ2 4 Φ.
Draw a graph by putting an edge between two points if they
are in the same part of Ψ1 or the same part of Ψ2. Then
the parts of Ψ1 ∨Ψ2 are the connected components of the graph.

Bailey resistance distance transform 5/21



Association schemes and coherent configurations

Suppose that Φ and Ψ are both association schemes.
Then Φ ∨Ψ is also an association scheme.
In general Φ ∧Ψ is not an association scheme: indeed, there
may be no association scheme which refines them both.

On the other hand, if Φ and Ψ are both coherent configurations
then Φ ∨Ψ and Φ ∧Ψ are both coherent configurations.
The trivial partition of Ω×Ω into singletons is a coherent
configuration.
Let Π be any partition of Ω×Ω. Then the set of coherent
configurations which refine Π is non-empty. The supremum of
all of these is a coherent configuration CC(Π) satisfying
1. CC(Π) 4 Π;
2. if Φ is a coherent configuration then

Φ 4 Π if and only if Φ 4 CC(Π).
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Weisfeiler–Leman

Put n = |Ω|. Imagine the parts of Π as giving different colours
to the n2 cells of Ω×Ω.

Let α, β, γ be elements of Ω.
If (α, β) is coloured red and (β, γ) is coloured blue then the
path (α, β, γ) is coloured by the ordered pair (red, blue).
There are n paths of length two from α to γ (including (α, α, γ)
and (α, γ, γ)). If we re-label the pair (α, γ) according to how
many such pairs have each ordered pair of colours, then we
obtain a new partition of Ω×Ω.
We shall call this WL(Π), because this uses the algorithm
introduced by Weisfeiler and Leman. It is clear that
WL(Π) 4 Π.
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Properties of WL(Π)

Suppose that Π satsifies (C1).
If red is a colour then it has a dual colour red′ (which may be
the same as red) such that Ared′ = A>red. The reverse of a path
coloured (red, blue) from α to β is a path coloured (blue′, red′)
from β to α. Hence WL(Π) also satisfies (C1).

Suppose that Π satisfies (C2).
If red is a colour which occurs only on diag(Ω) and there is a
path of length two from α coloured (red, red) then the path
must be (α, α, α). Hence WL(Π) also satisfies (C2).
In general, the number of (red, blue) paths from α to β is the
(α, β)-entry in AredAblue. Thus if Π satisfies (C3) then
WL(Π) = Π. Otherwise, WL(Π) ≺ Π.
These results show that if Π is a coherent configuration then
Π = WL(Π). On the other hand, if Π satisfies (C1) and (C2) but
not (C3) then WL(Π) satisfies (C1) and (C2) and WL(Π) ≺ Π.
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Applying Weisfeiler–Leman to a graph

Given a graph Γ, the Weisfeiler–Leman algorithm is applied
repeatedly, starting with ΠΓ, giving

ΠΓ < WL(ΠΓ) < WL(WL(ΠΓ)) · · · .

Moreover, it is easy to see that if Π1 < Π2 then
WL(Π1) < WL(Π2). Therefore,

ΠΓ < WL(ΠΓ) < WL(CC(ΠΓ)) = CC(ΠΓ).

Each time that Weisfeiler–Leman is applied, either the resulting
partition is strictly finer than the preceding one or the
preceding one is CC(ΠΓ). Since ΠΓ has finitely many classes,
the process stabilizes at CC(ΠΓ) after finitely many steps.
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Another approach

Although Weisfeiler–Leman stabilizes after finitely many steps,
that finite number may still be considered to be “too large”.

Michael Kagan and Misha Klin proposed an alternative
method using resistance distance, which I will now explain.

Bailey resistance distance transform 10/21



Another approach

Although Weisfeiler–Leman stabilizes after finitely many steps,
that finite number may still be considered to be “too large”.
Michael Kagan and Misha Klin proposed an alternative
method using resistance distance, which I will now explain.

Bailey resistance distance transform 10/21



Electrical networks

We can consider the graph Γ as an electrical network with a
1-ohm resistance in each edge. Connect a 1-volt battery
between vertices α and β. Current flows in the network,
according to these rules.

1. Ohm’s Law:
In every edge, voltage drop = current × resistance =
current.

2. Kirchhoff’s Voltage Law:
The total voltage drop from one vertex to any other vertex
is the same no matter which path we take from one to the
other.

3. Kirchhoff’s Current Law:
At every vertex which is not connected to the battery,
the total current coming in is equal to the total current
going out.

Find the total current I from α to β, then use Ohm’s Law to
define the resistance distance Rαβ between α and β as 1/I.
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Resistance distance in two sparse graphs with 10 vertices

The cycle.
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If the distance between α and β is d

Rαβ =
d(10− d)

10
.

An alternative.
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Rαβ ≤ 2 for all α, β.
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Using the Laplacian matrix

Definition
The Laplacian matrix L of the graph Γ is the Ω×Ω matrix with

Lαβ =


degree of α if α = β
−1 if (α, β) is an edge
0 otherwise.

L is symmetric, with all row-sums zero. If Γ is connected then 0
is an eigenvalue of L with multiplicity one and eigenprojector
n−1J. Hence the Moore–Penrose inverse M of L is given by

M =

(
L +

1
n

J
)−1

− 1
n

J

and M is a polynomial in L.

Theorem
The resistance distance Rαβ between vertices α and β is

Rαβ =
(
Mαα + Mββ − 2Mαβ

)
.
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Resistance distance transform

The resistance distance transform RDT(ΠΓ) of the partition ΠΓ
is defined as follows.

I Off-diagonal pairs are in the same part if and only if they
have the same resistance distance.

I No pair in diag(Ω) is in any of those parts.
I Pairs (α, α) and (β, β) are in the same part if and only if

∑γ 6=α 1/Rαγ = ∑γ 6=β 1/Rβγ.
Then Γ is replaced by the complete graph on Ω with
conductance 1/Rαβ in each edge (α, β).
(Think of this as placing 1/Rαβ edges between α and β.)
Then RDT can be iterated.
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Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly
symmetric graphs Γ.

In every case, RDT stabilized at CC(ΠΓ), usually taking far
fewer iterations than WL.
A graph is distance-regular if its distance-classes form an
association scheme.
MKMK found that, when applied to a distance-regular graph,
RDT stabilizes at that association scheme in a single step.
This result agrees with results of Norman Biggs from 1993.

Those graphs are rather special. In general, WL(ΠΓ) satisfies
(C1) but not (C1+), because not all matrices are symmetric.
The result of applying RDT always satisfies (C1+), because the
resistance distances Rαβ and Rβα are equal.
Does iterated RDT always produce a symmetrized version of
iterated WL?
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Expand the team

MKMK talked about RDT at a conference in Pilsen in 2018 and
one in Yichang in 2019.

RAB and PJC were at both of these. In Yichang, they gave a
short course about Laplacian eigenvalues and their relevance to
finding optimal incomplete-block designs. This included the
use of resistance distance as a measure of optimality.
We decided to join forces.
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Some small examples: Bad results
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
{2, 3} is an edge; {4, 6} is a non-edge; but R23 = R46 = 1.
In this case, the partition defined by resistance distance does
not refine the original partition ΠΓ.
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Bad results for the complementary graph
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In the complementary graph Γ′, for resistance distances not
involving 4 or 6, we can replace the left-hand side by a single
edge between 1 and 2. Therefore R′12 = R′13. But R12 6= R13.
Neither of these RDT partitions refines the other.
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More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows.

If the partition Π has r non-diagonal parts, we associate an
indeterminate xi with the i-th part, and regard this as the
conductance.
Put C = ∑r

i=1 xiAi, where the sum is over all non-diagonal
parts. “Laplacianize” this by multiplying by −1 and then
changing the diagonal entries so that the row and columns
sums are all zero. The Moore–Penrose inverse then gives the
resistance distances as rational functions of x1, . . . , xr.
Now two edges are in the same part of RDT 2(Π) if and only if
their resistance distances are equal as rational functions.
Relabelling the parts simply permutes the indeterminates, so it
does not change RDT 2(Π). In particular, a graph and its
complement give the same RDT 2.
We have not found an example where edges with different
indeterminates get the same resistance distance, but we have
not yet proved that this does not happen.
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Some positive results

Theorem
If Π is an association scheme, then RDT 2(Π) = Π.

Theorem
If Γ is the graph corresponding to a non-diagonal part in an
association scheme, and RDT2 is applied repeatedly, then it stabilizes
at the association scheme which is the supremum of all association
schemes which have Γ as such a graph.
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Some questions

1. Does repeated RDT2 always stabilize?

2. If so, does it do so in fewer steps than Weisfeiler–Leman?
3. If CC(Π) does not satisfy (C1+), does RDT2 stabilize at a

Jordan scheme?
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