# Resistance distance in the context of association schemes and coherent configurations 

R. A. Bailey<br>University of St Andrews<br>

British Combinatorial Conference
Lancaster University, 12 July 2022
Mini-Symposium on Designs and Algebraic Structures
Joint work with Peter Cameron (University of St Andrews), and Michael Kagan (Penn State University)

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$.

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\operatorname{diag}(\Omega)=\{(\omega, \omega): \omega \in \Omega\}
$$

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\begin{aligned}
\operatorname{diag}(\Omega)= & \{(\omega, \omega): \omega \in \Omega\} \\
& \{(\alpha, \beta):(\alpha, \beta) \text { is an edge of } \Gamma\}
\end{aligned}
$$

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\begin{aligned}
\operatorname{diag}(\Omega)= & \{(\omega, \omega): \omega \in \Omega\} \\
& \{(\alpha, \beta):(\alpha, \beta) \text { is an edge of } \Gamma\} \\
& \{(\alpha, \beta): \alpha \neq \beta \text { and }(\alpha, \beta) \text { is not an edge of } \Gamma\}
\end{aligned}
$$

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\begin{aligned}
\operatorname{diag}(\Omega)= & \{(\omega, \omega): \omega \in \Omega\} \\
& \{(\alpha, \beta):(\alpha, \beta) \text { is an edge of } \Gamma\} \\
& \{(\alpha, \beta): \alpha \neq \beta \text { and }(\alpha, \beta) \text { is not an edge of } \Gamma\}
\end{aligned}
$$

The corresponding $\Omega \times \Omega$ square matrices (with all entries equal to 1 or 0 ) are $I, A_{\Gamma}$ and $J-A_{\Gamma}-I$, where $I$ is the identity matrix, $A_{\Gamma}$ is the adjacency matrix of $\Gamma$, and $J$ is the all- 1 matrix.

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\begin{aligned}
\operatorname{diag}(\Omega)= & \{(\omega, \omega): \omega \in \Omega\} \\
& \{(\alpha, \beta):(\alpha, \beta) \text { is an edge of } \Gamma\} \\
& \{(\alpha, \beta): \alpha \neq \beta \text { and }(\alpha, \beta) \text { is not an edge of } \Gamma\}
\end{aligned}
$$

The corresponding $\Omega \times \Omega$ square matrices
(with all entries equal to 1 or 0 ) are $I, A_{\Gamma}$ and $J-A_{\Gamma}-I$, where $I$ is the identity matrix, $A_{\Gamma}$ is the adjacency matrix of $\Gamma$, and $J$ is the all-1 matrix.
Let $\mathcal{A}_{\Gamma}$ be the set of real linear combinations of these matrices.

## From graph to partition

Suppose that $\Gamma$ is a (simple, undirected) graph with (finite) vertex-set $\Omega$. This defines a partition $\Pi_{\Gamma}$ of $\Omega \times \Omega$ into three parts (unless $\Gamma$ is either complete or null).

$$
\begin{aligned}
\operatorname{diag}(\Omega)= & \{(\omega, \omega): \omega \in \Omega\} \\
& \{(\alpha, \beta):(\alpha, \beta) \text { is an edge of } \Gamma\} \\
& \{(\alpha, \beta): \alpha \neq \beta \text { and }(\alpha, \beta) \text { is not an edge of } \Gamma\}
\end{aligned}
$$

The corresponding $\Omega \times \Omega$ square matrices (with all entries equal to 1 or 0 ) are $I, A_{\Gamma}$ and $J-A_{\Gamma}-I$, where $I$ is the identity matrix, $A_{\Gamma}$ is the adjacency matrix of $\Gamma$, and $J$ is the all- 1 matrix.
Let $\mathcal{A}_{\Gamma}$ be the set of real linear combinations of these matrices. Then $\mathcal{A}_{\Gamma}$ is closed under matrix multiplication if and only if the graph $\Gamma$ is strongly regular.

## Generalize to other partitions of $\Omega \times \Omega$

Let $W$ be any subset of $\Omega \times \Omega$. We generalize the idea of adjacency matrix by writing $A_{W}$ for the $\Omega \times \Omega$ matrix with

$$
A_{W}(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in W \\ 0 & \text { otherwise }\end{cases}
$$

Put $W^{\top}=\{(\alpha, \beta):(\beta, \alpha) \in W\}$.

## Generalize to other partitions of $\Omega \times \Omega$

Let $W$ be any subset of $\Omega \times \Omega$. We generalize the idea of adjacency matrix by writing $A_{W}$ for the $\Omega \times \Omega$ matrix with

$$
A_{W}(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in W \\ 0 & \text { otherwise }\end{cases}
$$

Put $W^{\top}=\{(\alpha, \beta):(\beta, \alpha) \in W\}$. Then $A_{W^{\top}}=A_{W}^{\top}$.

## Generalize to other partitions of $\Omega \times \Omega$

Let $W$ be any subset of $\Omega \times \Omega$. We generalize the idea of adjacency matrix by writing $A_{W}$ for the $\Omega \times \Omega$ matrix with

$$
A_{W}(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in W \\ 0 & \text { otherwise }\end{cases}
$$

Put $W^{\top}=\{(\alpha, \beta):(\beta, \alpha) \in W\}$. Then $A_{W^{\top}}=A_{W}^{\top}$.
If $\Pi$ is a partition of $\Omega \times \Omega$, let $\mathcal{A}_{\Pi}$ be the set of real linear combinations of the matrices $A_{W}$ for all parts $W$ of $\Pi$.

## Generalize to other partitions of $\Omega \times \Omega$

Let $W$ be any subset of $\Omega \times \Omega$. We generalize the idea of adjacency matrix by writing $A_{W}$ for the $\Omega \times \Omega$ matrix with

$$
A_{W}(\alpha, \beta)= \begin{cases}1 & \text { if }(\alpha, \beta) \in W \\ 0 & \text { otherwise }\end{cases}
$$

Put $W^{\top}=\{(\alpha, \beta):(\beta, \alpha) \in W\}$. Then $A_{W^{\top}}=A_{W}^{\top}$.
If $\Pi$ is a partition of $\Omega \times \Omega$, let $\mathcal{A}_{\Pi}$ be the set of real linear combinations of the matrices $A_{W}$ for all parts $W$ of $\Pi$.

We are going to consider three conditions (and their variants) that $\Pi$ might satisfy.

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$. (Closure under transposition.)

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$. (Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.
$(C 2+) \operatorname{diag}(\Omega)$ is a single class of the partition $\Pi$.

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.
$(\mathrm{C} 2+) \operatorname{diag}(\Omega)$ is a single class of the partition $\Pi$.
(C3-) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X}+A_{X} A_{W} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under Jordan multiplication.)

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or
$W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.
$(\mathrm{C} 2+) \operatorname{diag}(\Omega)$ is a single class of the partition $\Pi$.
(C3-) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X}+A_{X} A_{W} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under Jordan multiplication.)
$\Pi$ is a coherent configuration if (C1), (C2) and (C3) are satisfied.

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.
$(\mathrm{C} 2+) \operatorname{diag}(\Omega)$ is a single class of the partition $\Pi$.
(C3-) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X}+A_{X} A_{W} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under Jordan multiplication.)
$\Pi$ is a coherent configuration if (C1), (C2) and (C3) are satisfied.
$\Pi$ is an association scheme if (C1+), (C2+) and (C3) are satisfied.

## Conditions on a partition $\Pi$ of $\Omega \times \Omega$

(C1) If $W$ is a part of the partition $\Pi$, then so is $W^{\top}$.
(Closure under transposition.)
(C2) If $W$ is a part of $\Pi$, then either $W \subseteq \operatorname{diag}(\Omega)$ or $W \cap \operatorname{diag}(\Omega)=\varnothing$.
(The diagonal is special.)
(The corresponding subsets of $\Omega$ are called fibres.)
(C3) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under matrix multiplication.)
Variants of these conditions.
$(\mathrm{C} 1+)$ If $W$ is a part of the partition $\Pi$, then $W=W^{\top}$.
$(\mathrm{C} 2+) \operatorname{diag}(\Omega)$ is a single class of the partition $\Pi$.
(C3-) If $W$ and $X$ are parts of $\Pi$, then $A_{W} A_{X}+A_{X} A_{W} \in \mathcal{A}_{\Pi}$.
( $\mathcal{A}_{\Pi}$ is closed under Jordan multiplication.)
$\Pi$ is a coherent configuration if (C1), (C2) and (C3) are satisfied.
$\Pi$ is an association scheme if $(\mathrm{C} 1+),(\mathrm{C} 2+)$ and (C3) are satisfied.
$\Pi$ is an Jordan scheme if $(\mathrm{C} 1+),(\mathrm{C} 2)$ and $(\mathrm{C} 3-)$ are satisfied.

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.
Definition
The infimum, or meet, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \wedge \Psi_{2}$ each of whose parts is a non-empty intersection of a part of $\Psi_{1}$ and a part of $\Psi_{2}$.

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.
Definition
The infimum, or meet, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \wedge \Psi_{2}$ each of whose parts is a non-empty intersection of a part of $\Psi_{1}$ and a part of $\Psi_{2}$. So $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{1}$ and $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{2}$;

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.
Definition
The infimum, or meet, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \wedge \Psi_{2}$ each of whose parts is a non-empty intersection of a part of $\Psi_{1}$ and a part of $\Psi_{2}$. So $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{1}$ and $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{2}$; and if $\Phi \preccurlyeq \Psi_{1}$ and $\Phi \preccurlyeq \Psi_{2}$ then $\Phi \preccurlyeq \Psi_{1} \wedge \Psi_{2}$.

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.
Definition
The infimum, or meet, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \wedge \Psi_{2}$ each of whose parts is a non-empty intersection of a part of $\Psi_{1}$ and a part of $\Psi_{2}$.
So $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{1}$ and $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{2}$; and if $\Phi \preccurlyeq \Psi_{1}$ and $\Phi \preccurlyeq \Psi_{2}$ then $\Phi \preccurlyeq \Psi_{1} \wedge \Psi_{2}$.

## Definition

The supremum, or join, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \vee \Psi_{2}$ which satisfies $\Psi_{1} \preccurlyeq \Psi_{1} \vee \Psi_{2}$ and $\Psi_{2} \preccurlyeq \Psi_{1} \vee \Psi_{2}$ and if $\Psi_{1} \preccurlyeq \Phi$ and $\Psi_{2} \preccurlyeq \Phi$ then $\Psi_{1} \vee \Psi_{2} \preccurlyeq \Phi$.

## The partial order on partitions of $\Omega \times \Omega$

If $\Phi$ and $\Psi$ are two partitions of $\Omega \times \Omega$ then $\Phi \preccurlyeq \Psi$ ( $\Phi$ refines $\Psi$ ) if each part of $\Phi$ is contained in a single part of $\Psi$. Also, $\Phi \prec \Psi$ if $\Phi \preccurlyeq \Psi$ and $\Phi \neq \Psi$.
Definition
The infimum, or meet, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \wedge \Psi_{2}$ each of whose parts is a non-empty intersection of a part of $\Psi_{1}$ and a part of $\Psi_{2}$.
So $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{1}$ and $\Psi_{1} \wedge \Psi_{2} \preccurlyeq \Psi_{2}$; and if $\Phi \preccurlyeq \Psi_{1}$ and $\Phi \preccurlyeq \Psi_{2}$ then $\Phi \preccurlyeq \Psi_{1} \wedge \Psi_{2}$.

## Definition

The supremum, or join, of partitions $\Psi_{1}$ and $\Psi_{2}$ is the partition $\Psi_{1} \vee \Psi_{2}$ which satisfies $\Psi_{1} \preccurlyeq \Psi_{1} \vee \Psi_{2}$ and $\Psi_{2} \preccurlyeq \Psi_{1} \vee \Psi_{2}$ and if $\Psi_{1} \preccurlyeq \Phi$ and $\Psi_{2} \preccurlyeq \Phi$ then $\Psi_{1} \vee \Psi_{2} \preccurlyeq \Phi$.
Draw a graph by putting an edge between two points if they are in the same part of $\Psi_{1}$ or the same part of $\Psi_{2}$. Then the parts of $\Psi_{1} \vee \Psi_{2}$ are the connected components of the graph.

## Association schemes and coherent configurations

Suppose that $\Phi$ and $\Psi$ are both association schemes.
Then $\Phi \vee \Psi$ is also an association scheme. In general $\Phi \wedge \Psi$ is not an association scheme: indeed, there may be no association scheme which refines them both.

## Association schemes and coherent configurations

Suppose that $\Phi$ and $\Psi$ are both association schemes.
Then $\Phi \vee \Psi$ is also an association scheme.
In general $\Phi \wedge \Psi$ is not an association scheme: indeed, there may be no association scheme which refines them both.
On the other hand, if $\Phi$ and $\Psi$ are both coherent configurations then $\Phi \vee \Psi$ and $\Phi \wedge \Psi$ are both coherent configurations.

## Association schemes and coherent configurations

Suppose that $\Phi$ and $\Psi$ are both association schemes.
Then $\Phi \vee \Psi$ is also an association scheme.
In general $\Phi \wedge \Psi$ is not an association scheme: indeed, there may be no association scheme which refines them both.
On the other hand, if $\Phi$ and $\Psi$ are both coherent configurations then $\Phi \vee \Psi$ and $\Phi \wedge \Psi$ are both coherent configurations.
The trivial partition of $\Omega \times \Omega$ into singletons is a coherent configuration.

## Association schemes and coherent configurations

Suppose that $\Phi$ and $\Psi$ are both association schemes.
Then $\Phi \vee \Psi$ is also an association scheme.
In general $\Phi \wedge \Psi$ is not an association scheme: indeed, there may be no association scheme which refines them both.
On the other hand, if $\Phi$ and $\Psi$ are both coherent configurations then $\Phi \vee \Psi$ and $\Phi \wedge \Psi$ are both coherent configurations.
The trivial partition of $\Omega \times \Omega$ into singletons is a coherent configuration.
Let $\Pi$ be any partition of $\Omega \times \Omega$. Then the set of coherent configurations which refine $\Pi$ is non-empty.

## Association schemes and coherent configurations

Suppose that $\Phi$ and $\Psi$ are both association schemes.
Then $\Phi \vee \Psi$ is also an association scheme.
In general $\Phi \wedge \Psi$ is not an association scheme: indeed, there may be no association scheme which refines them both.
On the other hand, if $\Phi$ and $\Psi$ are both coherent configurations then $\Phi \vee \Psi$ and $\Phi \wedge \Psi$ are both coherent configurations.
The trivial partition of $\Omega \times \Omega$ into singletons is a coherent configuration.
Let $\Pi$ be any partition of $\Omega \times \Omega$. Then the set of coherent configurations which refine $\Pi$ is non-empty. The supremum of all of these is a coherent configuration $\mathrm{CC}(\Pi)$ satisfying

1. $\mathrm{CC}(\Pi) \preccurlyeq \Pi$;
2. if $\Phi$ is a coherent configuration then $\Phi \preccurlyeq \Pi$ if and only if $\Phi \preccurlyeq \mathrm{CC}(\Pi)$.

## Weisfeiler-Leman

Put $n=|\Omega|$. Imagine the parts of $\Pi$ as giving different colours to the $n^{2}$ cells of $\Omega \times \Omega$.

## Weisfeiler-Leman

Put $n=|\Omega|$. Imagine the parts of $\Pi$ as giving different colours to the $n^{2}$ cells of $\Omega \times \Omega$. Let $\alpha, \beta, \gamma$ be elements of $\Omega$.

## Weisfeiler-Leman

Put $n=|\Omega|$. Imagine the parts of $\Pi$ as giving different colours to the $n^{2}$ cells of $\Omega \times \Omega$. Let $\alpha, \beta, \gamma$ be elements of $\Omega$.
If $(\alpha, \beta)$ is coloured red and $(\beta, \gamma)$ is coloured blue then the path $(\alpha, \beta, \gamma)$ is coloured by the ordered pair (red, blue).

## Weisfeiler-Leman

Put $n=|\Omega|$. Imagine the parts of $\Pi$ as giving different colours to the $n^{2}$ cells of $\Omega \times \Omega$. Let $\alpha, \beta, \gamma$ be elements of $\Omega$.
If $(\alpha, \beta)$ is coloured red and $(\beta, \gamma)$ is coloured blue then the path $(\alpha, \beta, \gamma)$ is coloured by the ordered pair (red, blue).
There are $n$ paths of length two from $\alpha$ to $\gamma$ (including $(\alpha, \alpha, \gamma)$ and $(\alpha, \gamma, \gamma))$. If we re-label the pair $(\alpha, \gamma)$ according to how many such pairs have each ordered pair of colours, then we obtain a new partition of $\Omega \times \Omega$.

## Weisfeiler-Leman

Put $n=|\Omega|$. Imagine the parts of $\Pi$ as giving different colours to the $n^{2}$ cells of $\Omega \times \Omega$. Let $\alpha, \beta, \gamma$ be elements of $\Omega$.
If $(\alpha, \beta)$ is coloured red and $(\beta, \gamma)$ is coloured blue then the path $(\alpha, \beta, \gamma)$ is coloured by the ordered pair (red, blue).
There are $n$ paths of length two from $\alpha$ to $\gamma$ (including $(\alpha, \alpha, \gamma)$ and $(\alpha, \gamma, \gamma)$ ). If we re-label the pair $(\alpha, \gamma)$ according to how many such pairs have each ordered pair of colours, then we obtain a new partition of $\Omega \times \Omega$.
We shall call this WL(П), because this uses the algorithm introduced by Weisfeiler and Leman. It is clear that $\mathrm{WL}(\Pi) \preccurlyeq \Pi$.

## Properties of WL( $\Pi$ )

Suppose that $\Pi$ satsifies (C1).
If red is a colour then it has a dual colour red' (which may be the same as red) such that $A_{\text {red }^{\prime}}=A_{\text {red }}^{\top}$. The reverse of a path coloured (red, blue) from $\alpha$ to $\beta$ is a path coloured (blue ${ }^{\prime}$, red $^{\prime}$ ) from $\beta$ to $\alpha$. Hence $W L(\Pi)$ also satisfies (C1).

## Properties of WL( $\Pi)$

Suppose that $\Pi$ satsifies (C1).
If red is a colour then it has a dual colour red' (which may be the same as red) such that $A_{\text {red }^{\prime}}=A_{\text {red }}^{\top}$. The reverse of a path coloured (red, blue) from $\alpha$ to $\beta$ is a path coloured (blue', ${ }^{\prime}$ red $^{\prime}$ ) from $\beta$ to $\alpha$. Hence $\mathrm{WL}(\Pi)$ also satisfies (C1).
Suppose that $\Pi$ satisfies (C2).
If red is a colour which occurs only on $\operatorname{diag}(\Omega)$ and there is a path of length two from $\alpha$ coloured (red, red) then the path must be $(\alpha, \alpha, \alpha)$. Hence $\mathrm{WL}(\Pi)$ also satisfies (C2).

## Properties of WL( $\Pi)$

Suppose that $\Pi$ satsifies (C1).
If red is a colour then it has a dual colour red' (which may be the same as red) such that $A_{\text {red }^{\prime}}=A_{\text {red }}^{\top}$. The reverse of a path coloured (red, blue) from $\alpha$ to $\beta$ is a path coloured (blue', red ${ }^{\prime}$ ) from $\beta$ to $\alpha$. Hence $\mathrm{WL}(\Pi)$ also satisfies (C1).
Suppose that $\Pi$ satisfies (C2).
If red is a colour which occurs only on $\operatorname{diag}(\Omega)$ and there is a path of length two from $\alpha$ coloured (red, red) then the path must be ( $\alpha, \alpha, \alpha$ ). Hence $W L(\Pi)$ also satisfies (C2).
In general, the number of (red, blue) paths from $\alpha$ to $\beta$ is the $(\alpha, \beta)$-entry in $A_{\text {red }} A_{\text {blue }}$. Thus if $\Pi$ satisfies (C3) then $W \mathrm{~L}(\Pi)=\Pi$. Otherwise, $\mathrm{WL}(\Pi) \prec \Pi$.

## Properties of WL( $\Pi)$

Suppose that $\Pi$ satsifies (C1).
If red is a colour then it has a dual colour red' (which may be the same as red) such that $A_{\text {red }^{\prime}}=A_{\text {red }}^{\top}$. The reverse of a path coloured (red, blue) from $\alpha$ to $\beta$ is a path coloured (blue ${ }^{\prime}, \mathrm{red}^{\prime}$ ) from $\beta$ to $\alpha$. Hence $W L(\Pi)$ also satisfies (C1).

## Suppose that $\Pi$ satisfies (C2).

If red is a colour which occurs only on $\operatorname{diag}(\Omega)$ and there is a path of length two from $\alpha$ coloured (red, red) then the path must be ( $\alpha, \alpha, \alpha$ ). Hence $W L(\Pi)$ also satisfies (C2).
In general, the number of (red, blue) paths from $\alpha$ to $\beta$ is the $(\alpha, \beta)$-entry in $A_{\text {red }} A_{\text {blue. }}$. Thus if $\Pi$ satisfies (C3) then $\mathrm{WL}(\Pi)=\Pi$. Otherwise, $\mathrm{WL}(\Pi) \prec \Pi$.
These results show that if $\Pi$ is a coherent configuration then $\Pi=W L(\Pi)$. On the other hand, if $\Pi$ satisfies (C1) and (C2) but not (C3) then WL( $\Pi$ ) satisfies (C1) and (C2) and WL $(\Pi) \prec \Pi$.

## Applying Weisfeiler-Leman to a graph

Given a graph $\Gamma$, the Weisfeiler-Leman algorithm is applied repeatedly, starting with $\Pi_{\Gamma}$, giving

$$
\Pi_{\Gamma} \succcurlyeq \mathrm{WL}\left(\Pi_{\Gamma}\right) \succcurlyeq \mathrm{WL}\left(\mathrm{WL}\left(\Pi_{\Gamma}\right)\right) \cdots .
$$

## Applying Weisfeiler-Leman to a graph

Given a graph $\Gamma$, the Weisfeiler-Leman algorithm is applied repeatedly, starting with $\Pi_{\Gamma}$, giving

$$
\Pi_{\Gamma} \succcurlyeq \mathrm{WL}\left(\Pi_{\Gamma}\right) \succcurlyeq \mathrm{WL}\left(\mathrm{WL}\left(\Pi_{\Gamma}\right)\right) \cdots
$$

Moreover, it is easy to see that if $\Pi_{1} \succcurlyeq \Pi_{2}$ then $\mathrm{WL}\left(\Pi_{1}\right) \succcurlyeq \mathrm{WL}\left(\Pi_{2}\right)$. Therefore,

$$
\Pi_{\Gamma} \succcurlyeq \mathrm{WL}\left(\Pi_{\Gamma}\right) \succcurlyeq \mathrm{WL}\left(\mathrm{CC}\left(\Pi_{\Gamma}\right)\right)=\mathrm{CC}\left(\Pi_{\Gamma}\right)
$$

## Applying Weisfeiler-Leman to a graph

Given a graph $\Gamma$, the Weisfeiler-Leman algorithm is applied repeatedly, starting with $\Pi_{\Gamma}$, giving

$$
\Pi_{\Gamma} \succcurlyeq \mathrm{WL}\left(\Pi_{\Gamma}\right) \succcurlyeq \mathrm{WL}\left(\mathrm{WL}\left(\Pi_{\Gamma}\right)\right) \cdots
$$

Moreover, it is easy to see that if $\Pi_{1} \succcurlyeq \Pi_{2}$ then $\mathrm{WL}\left(\Pi_{1}\right) \succcurlyeq \mathrm{WL}\left(\Pi_{2}\right)$. Therefore,

$$
\Pi_{\Gamma} \succcurlyeq \mathrm{WL}\left(\Pi_{\Gamma}\right) \succcurlyeq \mathrm{WL}\left(\mathrm{CC}\left(\Pi_{\Gamma}\right)\right)=\mathrm{CC}\left(\Pi_{\Gamma}\right)
$$

Each time that Weisfeiler-Leman is applied, either the resulting partition is strictly finer than the preceding one or the preceding one is CC $\left(\Pi_{\Gamma}\right)$. Since $\Pi_{\Gamma}$ has finitely many classes, the process stabilizes at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$ after finitely many steps.

## Another approach

Although Weisfeiler-Leman stabilizes after finitely many steps, that finite number may still be considered to be "too large".

## Another approach

Although Weisfeiler-Leman stabilizes after finitely many steps, that finite number may still be considered to be "too large". Michael Kagan and Misha Klin proposed an alternative method using resistance distance, which I will now explain.

## Electrical networks

We can consider the graph $\Gamma$ as an electrical network with a 1 -ohm resistance in each edge. Connect a 1-volt battery between vertices $\alpha$ and $\beta$. Current flows in the network, according to these rules.

## Electrical networks

We can consider the graph $\Gamma$ as an electrical network with a 1 -ohm resistance in each edge. Connect a 1-volt battery between vertices $\alpha$ and $\beta$. Current flows in the network, according to these rules.

1. Ohm's Law:

In every edge, voltage drop $=$ current $\times$ resistance $=$ current.

## Electrical networks

We can consider the graph $\Gamma$ as an electrical network with a 1 -ohm resistance in each edge. Connect a 1-volt battery between vertices $\alpha$ and $\beta$. Current flows in the network, according to these rules.

1. Ohm's Law:

In every edge, voltage drop $=$ current $\times$ resistance $=$ current.
2. Kirchhoff's Voltage Law:

The total voltage drop from one vertex to any other vertex is the same no matter which path we take from one to the other.

## Electrical networks

We can consider the graph $\Gamma$ as an electrical network with a 1 -ohm resistance in each edge. Connect a 1-volt battery between vertices $\alpha$ and $\beta$. Current flows in the network, according to these rules.

1. Ohm's Law:

In every edge, voltage drop $=$ current $\times$ resistance $=$ current.
2. Kirchhoff's Voltage Law:

The total voltage drop from one vertex to any other vertex is the same no matter which path we take from one to the other.
3. Kirchhoff's Current Law:

At every vertex which is not connected to the battery, the total current coming in is equal to the total current going out.

## Electrical networks

We can consider the graph $\Gamma$ as an electrical network with a 1 -ohm resistance in each edge. Connect a 1-volt battery between vertices $\alpha$ and $\beta$. Current flows in the network, according to these rules.

1. Ohm's Law:

In every edge, voltage drop $=$ current $\times$ resistance $=$ current.
2. Kirchhoff's Voltage Law:

The total voltage drop from one vertex to any other vertex is the same no matter which path we take from one to the other.
3. Kirchhoff's Current Law:

At every vertex which is not connected to the battery, the total current coming in is equal to the total current going out.
Find the total current $I$ from $\alpha$ to $\beta$, then use Ohm's Law to define the resistance distance $R_{\alpha \beta}$ between $\alpha$ and $\beta$ as $1 / I$.

## Resistance distance in two sparse graphs with 10 vertices

The cycle.


## Resistance distance in two sparse graphs with 10 vertices

The cycle.


If the distance between $\alpha$ and $\beta$ is $d$

$$
R_{\alpha \beta}=\frac{d(10-d)}{10}
$$

## Resistance distance in two sparse graphs with 10 vertices

The cycle.


An alternative.


If the distance between $\alpha$ and $\beta$ is $d$

$$
R_{\alpha \beta}=\frac{d(10-d)}{10}
$$

## Resistance distance in two sparse graphs with 10 vertices

The cycle.


An alternative.


If the distance between $\alpha$ and $\beta$ is $d$

$$
R_{\alpha \beta} \leq 2 \text { for all } \alpha, \beta
$$

$$
R_{\alpha \beta}=\frac{d(10-d)}{10}
$$

## Using the Laplacian matrix

## Definition

The Laplacian matrix $L$ of the graph $\Gamma$ is the $\Omega \times \Omega$ matrix with

$$
L_{\alpha \beta}=\left\{\begin{array}{cl}
\text { degree of } \alpha & \text { if } \alpha=\beta \\
-1 & \text { if }(\alpha, \beta) \text { is an edge } \\
0 & \text { otherwise }
\end{array}\right.
$$

## Using the Laplacian matrix

## Definition

The Laplacian matrix $L$ of the graph $\Gamma$ is the $\Omega \times \Omega$ matrix with

$$
L_{\alpha \beta}=\left\{\begin{array}{cl}
\text { degree of } \alpha & \text { if } \alpha=\beta \\
-1 & \text { if }(\alpha, \beta) \text { is an edge } \\
0 & \text { otherwise }
\end{array}\right.
$$

$L$ is symmetric, with all row-sums zero. If $\Gamma$ is connected then 0 is an eigenvalue of $L$ with multiplicity one and eigenprojector $n^{-1} J$.

## Using the Laplacian matrix

## Definition

The Laplacian matrix $L$ of the graph $\Gamma$ is the $\Omega \times \Omega$ matrix with

$$
L_{\alpha \beta}=\left\{\begin{array}{cl}
\text { degree of } \alpha & \text { if } \alpha=\beta \\
-1 & \text { if }(\alpha, \beta) \text { is an edge } \\
0 & \text { otherwise }
\end{array}\right.
$$

$L$ is symmetric, with all row-sums zero. If $\Gamma$ is connected then 0 is an eigenvalue of $L$ with multiplicity one and eigenprojector $n^{-1} J$. Hence the Moore-Penrose inverse $M$ of $L$ is given by

$$
M=\left(L+\frac{1}{n} J\right)^{-1}-\frac{1}{n} J
$$

and $M$ is a polynomial in $L$.
Theorem
The resistance distance $R_{\alpha \beta}$ between vertices $\alpha$ and $\beta$ is

$$
R_{\alpha \beta}=\left(M_{\alpha \alpha}+M_{\beta \beta}-2 M_{\alpha \beta}\right)
$$

## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.


## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.
- No pair in $\operatorname{diag}(\Omega)$ is in any of those parts.


## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.
- No pair in $\operatorname{diag}(\Omega)$ is in any of those parts.
- Pairs $(\alpha, \alpha)$ and $(\beta, \beta)$ are in the same part if and only if $\sum_{\gamma \neq \alpha} 1 / R_{\alpha \gamma}=\sum_{\gamma \neq \beta} 1 / R_{\beta \gamma}$.


## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.
- No pair in $\operatorname{diag}(\Omega)$ is in any of those parts.
- Pairs $(\alpha, \alpha)$ and $(\beta, \beta)$ are in the same part if and only if $\sum_{\gamma \neq \alpha} 1 / R_{\alpha \gamma}=\sum_{\gamma \neq \beta} 1 / R_{\beta \gamma}$.
Then $\Gamma$ is replaced by the complete graph on $\Omega$ with conductance $1 / R_{\alpha \beta}$ in each edge $(\alpha, \beta)$.


## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.
- No pair in $\operatorname{diag}(\Omega)$ is in any of those parts.
- Pairs $(\alpha, \alpha)$ and $(\beta, \beta)$ are in the same part if and only if $\sum_{\gamma \neq \alpha} 1 / R_{\alpha \gamma}=\sum_{\gamma \neq \beta} 1 / R_{\beta \gamma}$.
Then $\Gamma$ is replaced by the complete graph on $\Omega$ with conductance $1 / R_{\alpha \beta}$ in each edge $(\alpha, \beta)$.
(Think of this as placing $1 / R_{\alpha \beta}$ edges between $\alpha$ and $\beta$.)


## Resistance distance transform

The resistance distance transform $\operatorname{RDT}\left(\Pi_{\Gamma}\right)$ of the partition $\Pi_{\Gamma}$ is defined as follows.

- Off-diagonal pairs are in the same part if and only if they have the same resistance distance.
- No pair in $\operatorname{diag}(\Omega)$ is in any of those parts.
- Pairs $(\alpha, \alpha)$ and $(\beta, \beta)$ are in the same part if and only if $\sum_{\gamma \neq \alpha} 1 / R_{\alpha \gamma}=\sum_{\gamma \neq \beta} 1 / R_{\beta \gamma}$.
Then $\Gamma$ is replaced by the complete graph on $\Omega$ with conductance $1 / R_{\alpha \beta}$ in each edge $(\alpha, \beta)$. (Think of this as placing $1 / R_{\alpha \beta}$ edges between $\alpha$ and $\beta$.) Then RDT can be iterated.


## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.
MKMK found that, when applied to a distance-regular graph, RDT stabilizes at that association scheme in a single step.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.
MKMK found that, when applied to a distance-regular graph, RDT stabilizes at that association scheme in a single step. This result agrees with results of Norman Biggs from 1993.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.
MKMK found that, when applied to a distance-regular graph, RDT stabilizes at that association scheme in a single step. This result agrees with results of Norman Biggs from 1993.
Those graphs are rather special. In general, $\mathrm{WL}\left(\Pi_{\Gamma}\right)$ satisfies (C1) but not ( $\mathrm{C} 1+$ ), because not all matrices are symmetric.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.
MKMK found that, when applied to a distance-regular graph, RDT stabilizes at that association scheme in a single step. This result agrees with results of Norman Biggs from 1993.
Those graphs are rather special. In general, $\mathrm{WL}\left(\Pi_{\Gamma}\right)$ satisfies (C1) but not (C1+), because not all matrices are symmetric. The result of applying RDT always satisfies (C1+), because the resistance distances $R_{\alpha \beta}$ and $R_{\beta \alpha}$ are equal.

## Initial investigations of resistance distance transform

Michael Kagan and Misha Klin applied RDT to several highly symmetric graphs $\Gamma$.
In every case, RDT stabilized at $\mathrm{CC}\left(\Pi_{\Gamma}\right)$, usually taking far fewer iterations than WL.
A graph is distance-regular if its distance-classes form an association scheme.
MKMK found that, when applied to a distance-regular graph, RDT stabilizes at that association scheme in a single step. This result agrees with results of Norman Biggs from 1993.
Those graphs are rather special. In general, $\mathrm{WL}\left(\Pi_{\Gamma}\right)$ satisfies (C1) but not (C1+), because not all matrices are symmetric. The result of applying RDT always satisfies (C1+), because the resistance distances $R_{\alpha \beta}$ and $R_{\beta \alpha}$ are equal.
Does iterated RDT always produce a symmetrized version of iterated WL?

## Expand the team

MKMK talked about RDT at a conference in Pilsen in 2018 and one in Yichang in 2019.

## Expand the team

MKMK talked about RDT at a conference in Pilsen in 2018 and one in Yichang in 2019.
RAB and PJC were at both of these. In Yichang, they gave a short course about Laplacian eigenvalues and their relevance to finding optimal incomplete-block designs.

## Expand the team

MKMK talked about RDT at a conference in Pilsen in 2018 and one in Yichang in 2019.
RAB and PJC were at both of these. In Yichang, they gave a short course about Laplacian eigenvalues and their relevance to finding optimal incomplete-block designs. This included the use of resistance distance as a measure of optimality.

## Expand the team

MKMK talked about RDT at a conference in Pilsen in 2018 and one in Yichang in 2019.
RAB and PJC were at both of these. In Yichang, they gave a short course about Laplacian eigenvalues and their relevance to finding optimal incomplete-block designs. This included the use of resistance distance as a measure of optimality.
We decided to join forces.

## Some small examples: Bad results



## Some small examples: Bad results



$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

## Some small examples: Bad results

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \quad R=\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right]
$$

$\{2,3\}$ is an edge; $\{4,6\}$ is a non-edge; but $R_{23}=R_{46}=1$.
In this case, the partition defined by resistance distance does not refine the original partition $\Pi_{\Gamma}$.

## Bad results for the complementary graph



## Bad results for the complementary graph



$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right] \quad\left[\begin{array}{cccccc}
0 & \frac{5}{8} & \frac{5}{8} & \frac{17}{32} & \frac{1}{2} & \frac{17}{32} \\
\frac{5}{8} & 0 & 1 & \frac{17}{32} & \frac{5}{8} & \frac{17}{32} \\
\frac{5}{8} & 1 & 0 & \frac{33}{32} & \frac{5}{8} & \frac{33}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & 0 & \frac{25}{32} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{8} & \frac{5}{8} & \frac{25}{32} & 0 & \frac{25}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & \frac{1}{2} & \frac{25}{32} & 0
\end{array}\right]
$$

## Bad results for the complementary graph



$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right] \quad\left[\begin{array}{cccccc}
0 & \frac{5}{8} & \frac{5}{8} & \frac{17}{32} & \frac{1}{2} & \frac{17}{32} \\
\frac{5}{8} & 0 & 1 & \frac{17}{32} & \frac{5}{8} & \frac{17}{32} \\
\frac{5}{8} & 1 & 0 & \frac{33}{32} & \frac{5}{8} & \frac{33}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & 0 & \frac{25}{32} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{8} & \frac{5}{8} & \frac{25}{32} & 0 & \frac{25}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & \frac{1}{2} & \frac{25}{32} & 0
\end{array}\right]
$$

In the complementary graph $\Gamma^{\prime}$, for resistance distances not involving 4 or 6 , we can replace the left-hand side by a single edge between 1 and 2 .

## Bad results for the complementary graph



$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right] \quad\left[\begin{array}{cccccc}
0 & \frac{5}{8} & \frac{5}{8} & \frac{17}{32} & \frac{1}{2} & \frac{17}{32} \\
\frac{5}{8} & 0 & 1 & \frac{17}{32} & \frac{5}{8} & \frac{17}{32} \\
\frac{5}{8} & 1 & 0 & \frac{33}{32} & \frac{5}{8} & \frac{33}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & 0 & \frac{25}{32} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{8} & \frac{5}{8} & \frac{25}{32} & 0 & \frac{25}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & \frac{1}{2} & \frac{25}{32} & 0
\end{array}\right]
$$

In the complementary graph $\Gamma^{\prime}$, for resistance distances not involving 4 or 6 , we can replace the left-hand side by a single edge between 1 and 2 . Therefore $R_{12}^{\prime}=R_{13}^{\prime}$.

## Bad results for the complementary graph



$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right] \quad\left[\begin{array}{cccccc}
0 & \frac{5}{8} & \frac{5}{8} & \frac{17}{32} & \frac{1}{2} & \frac{17}{32} \\
\frac{5}{8} & 0 & 1 & \frac{17}{32} & \frac{5}{8} & \frac{17}{32} \\
\frac{5}{8} & 1 & 0 & \frac{33}{32} & \frac{5}{8} & \frac{33}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & 0 & \frac{25}{32} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{8} & \frac{5}{8} & \frac{25}{32} & 0 & \frac{25}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & \frac{1}{2} & \frac{25}{32} & 0
\end{array}\right]
$$

In the complementary graph $\Gamma^{\prime}$, for resistance distances not involving 4 or 6 , we can replace the left-hand side by a single edge between 1 and 2. Therefore $R_{12}^{\prime}=R_{13}^{\prime}$. But $R_{12} \neq R_{13}$.

## Bad results for the complementary graph



$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & \frac{11}{4} & 3 & \frac{11}{4} \\
1 & 0 & 1 & \frac{7}{4} & 2 & \frac{7}{4} \\
2 & 1 & 0 & \frac{3}{4} & 1 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 0 & \frac{3}{4} & 1 \\
3 & 2 & 1 & \frac{3}{4} & 0 & \frac{3}{4} \\
\frac{11}{4} & \frac{7}{4} & \frac{3}{4} & 1 & \frac{3}{4} & 0
\end{array}\right] \quad\left[\begin{array}{cccccc}
0 & \frac{5}{8} & \frac{5}{8} & \frac{17}{32} & \frac{1}{2} & \frac{17}{32} \\
\frac{5}{8} & 0 & 1 & \frac{17}{32} & \frac{5}{8} & \frac{17}{32} \\
\frac{5}{8} & 1 & 0 & \frac{33}{32} & \frac{5}{8} & \frac{33}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & 0 & \frac{25}{32} & \frac{1}{2} \\
\frac{1}{2} & \frac{5}{8} & \frac{5}{8} & \frac{25}{32} & 0 & \frac{25}{32} \\
\frac{17}{32} & \frac{17}{32} & \frac{33}{32} & \frac{1}{2} & \frac{25}{32} & 0
\end{array}\right]
$$

In the complementary graph $\Gamma^{\prime}$, for resistance distances not involving 4 or 6 , we can replace the left-hand side by a single edge between 1 and 2. Therefore $R_{12}^{\prime}=R_{13}^{\prime}$. But $R_{12} \neq R_{13}$. Neither of these RDT partitions refines the other.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows. If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows. If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows. If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts. "Laplacianize" this by multiplying by -1 and then changing the diagonal entries so that the row and columns sums are all zero.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows. If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts. "Laplacianize" this by multiplying by -1 and then changing the diagonal entries so that the row and columns sums are all zero. The Moore-Penrose inverse then gives the resistance distances as rational functions of $x_{1}, \ldots, x_{r}$.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows. If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts. "Laplacianize" this by multiplying by -1 and then changing the diagonal entries so that the row and columns sums are all zero. The Moore-Penrose inverse then gives the resistance distances as rational functions of $x_{1}, \ldots, x_{r}$. Now two edges are in the same part of RDT 2(П) if and only if their resistance distances are equal as rational functions.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows.
If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts. "Laplacianize" this by multiplying by -1 and then changing the diagonal entries so that the row and columns sums are all zero. The Moore-Penrose inverse then gives the resistance distances as rational functions of $x_{1}, \ldots, x_{r}$. Now two edges are in the same part of RDT 2( $\Pi$ ) if and only if their resistance distances are equal as rational functions.
Relabelling the parts simply permutes the indeterminates, so it does not change RDT 2(П). In particular, a graph and its complement give the same RDT 2.

## More sophisticated resistance distance transform

To avoid these problems, MK proposed RDT2, as follows.
If the partition $\Pi$ has $r$ non-diagonal parts, we associate an indeterminate $x_{i}$ with the $i$-th part, and regard this as the conductance.
Put $C=\sum_{i=1}^{r} x_{i} A_{i}$, where the sum is over all non-diagonal parts. "Laplacianize" this by multiplying by -1 and then changing the diagonal entries so that the row and columns sums are all zero. The Moore-Penrose inverse then gives the resistance distances as rational functions of $x_{1}, \ldots, x_{r}$. Now two edges are in the same part of RDT 2( $\Pi$ ) if and only if their resistance distances are equal as rational functions.
Relabelling the parts simply permutes the indeterminates, so it does not change RDT 2(П). In particular, a graph and its complement give the same RDT 2.
We have not found an example where edges with different indeterminates get the same resistance distance, but we have not yet proved that this dgess not thapяen.

## Some positive results

Theorem
If $\Pi$ is an association scheme, then $\operatorname{RDT} 2(\Pi)=\Pi$.

## Some positive results

Theorem
If $\Pi$ is an association scheme, then RDT $2(\Pi)=\Pi$.
Theorem
If $\Gamma$ is the graph corresponding to a non-diagonal part in an association scheme, and RDT2 is applied repeatedly, then it stabilizes at the association scheme which is the supremum of all association schemes which have $\Gamma$ as such a graph.

## Some questions

## 1. Does repeated RDT2 always stabilize?

## Some questions

1. Does repeated RDT2 always stabilize?
2. If so, does it do so in fewer steps than Weisfeiler-Leman?

## Some questions

1. Does repeated RDT2 always stabilize?
2. If so, does it do so in fewer steps than Weisfeiler-Leman?
3. If $\mathrm{CC}(\Pi)$ does not satisfy $(\mathrm{C} 1+)$, does RDT2 stabilize at a Jordan scheme?
