

| In breeding trials of new varieties, typically there is very little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "on any given field agricultural operations, at least for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seed of each of the new varieties.<br>Traditionally, an experiment has one plot for each new variety<br>and several plots for a well-established "control": for example,<br>30 new varieties on one plot each and one control on 8 plots.<br>In the last 10 years, Cullis and colleagues in Australia<br>(and independently Bueno and Gilmour)<br>have suggested replacing many occurrences of the the control<br>by double replicates of a small number of new varieties: for<br>example, 24 new varieties with one plot each, 6 new varieties<br>with two plots each, and the control on two further plots.<br>This is an improvement if there are no blocks. | <ul> <li>Centuries, have followed one of two directions, which are usually those of the rows and columns; consequently streaks of fertility, weed infestation, etc., do, in fact, occur predominantly in those two directions."</li> <li>R. A. Fisher, letter to H. Jeffreys, 30 May 1938 (selected correspondence edited by J. H. Bennett)</li> <li>(This assumption is dubious for field trials in Australia.)</li> <li>If field operations have been primarily in one direction for a long time, then it is reasonable to divide the fields into blocks whose length runs along that direction.</li> </ul> |



### The problem Linear model, estimation and variance We measure the response *Y* on each unit in each block. If that unit has variety *i* and block *D*, then we assume that $Y = \tau_i + \beta_D +$ random noise, We are given *b* blocks of size *k*. We are given *v* varieties. Assume that where the random noise is independently normally distributed average replication $= \bar{r} = \frac{bk}{v} \le 2.$ with zero mean and constant variance $\sigma^2$ . We want to estimate all the simple differences $\tau_i - \tau_i$ . How should we allocate varieties to blocks? What makes a block design good? Put variance of the best linear unbiased estimator $V_{ij} \sigma^2$ = for $\tau_i - \tau_j$ . We want all the $V_{ij}$ to be small. Optimality An example with 5n + 10 varieties in 5 blocks of size 4 + n

Apart from the constant multiple  $\sigma^2$ ,

$$V_{ii}$$
 = variance of the BLUE for  $\tau_i - \tau_i$ .

Put

$$V_T = \sum_{i=1}^{v-1} \sum_{j=i+1}^{v} V_{ij}$$
 = sum of variances of variety differences.

## Definition

For given values of b (the number of blocks), k (the size of the blocks) and v (the number of varieties), a block design is A-optimal if it minimizes  $V_T$ .

| 9 | 0 | 1 | 2 | $E_1$ | • • • | $E_n$ |
|---|---|---|---|-------|-------|-------|
|   |   |   |   |       |       |       |

 $3 \quad 4 \quad 5 \quad 6 \quad B_1 \quad \cdots \quad B_n$ 

 $1 \ 2 \ 3 \ 4 \ A_1 \ \cdots$ 

 $5 \ 6 \ 7 \ 8 \ C_1 \ \cdots$ 

 $7 8 9 0 D_1 \cdots$ 

 $A_n$ 

 $C_n$ 

 $D_n$ 

How do we calculate pairwise variances in a generic design?

Levi graph Levi graph: example  $2 \ 3 \ 4 \ A_1 \ \cdots$  $A_n$  $B_1 \cdots$  $B_n$ 5 6 7 5 8 9 C<sub>1</sub>  $C_n$ 2 . . . The Levi graph of the block design has 3 6 8 0 D<sub>1</sub> ...  $D_n$  one vertex for each variety 9 0 E<sub>1</sub>  $E_n$ 7 . . . one vertex for each block one edge for each plot (aka experimental unit), so that the edge for plot  $\omega$  joins the vertex for the variety on  $\omega$  to the vertex for the block containing  $\omega$ . D. 12/48

| We can consider the Levi graph as an electrical network<br>with a 1-ohm resistance in each edge.<br>Connect a 1-volt battery between vertices <i>i</i> and <i>j</i> .<br>Current flows in the network, according to these rules.<br>1. Ohm's Law:<br>In every edge,<br>voltage drop = current × resistance = current.<br>2. Kirchhoff's Voltage Law:<br>The total voltage drop from one vertex to any other vertex<br>is the same whichever path we take from one to the other.<br>3. Kirchhoff's Current Law:<br>At every vertex which is not connected to the battery,<br>the total current coming in is equal to the total current<br>going out.<br>Find the total current <i>I</i> from <i>i</i> to <i>j</i> , then use Ohm's Law to<br>define the effective resistance $R_{ij}$ between <i>i</i> and <i>j</i> as 1/ <i>I</i> . | Electrical networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Electrical networks: variance                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| define the effective resistance $R_{ij}$ between <i>i</i> and <i>j</i> as $1/I$ . matrix inversion if the graph is sparse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>with a 1-ohm resistance in each edge.</li> <li>Connect a 1-volt battery between vertices <i>i</i> and <i>j</i>.</li> <li>Current flows in the network, according to these rules.</li> <li>1. Ohm's Law: <ul> <li>In every edge,</li> <li>voltage drop = current × resistance = current.</li> </ul> </li> <li>2. Kirchhoff's Voltage Law: <ul> <li>The total voltage drop from one vertex to any other vertex is the same whichever path we take from one to the other.</li> </ul> </li> <li>3. Kirchhoff's Current Law: <ul> <li>At every vertex which is not connected to the battery, the total current coming in is equal to the total current going out.</li> </ul> </li> </ul> | TheoremIf $R_{ij}$ is the effective resistance between variety vertices i and j<br>in the Levi graph then $R_{ij} = V_{ij}$ .Put: $V_{CD}$ = variance of BLUE of $\beta_C - \beta_D$ for blocks C and D,<br>$V_{iC}$ = variance of BLUE of $\tau_i + \beta_C$ for variety i and block C.TheoremIf $R_{CD}$ and $R_{iC}$ are the effective resistances between vertices C and D,<br>and between i and C respectively, in the Levi graph then $R_{CD} = V_{CD}$ and $R_{iC} = V_{iC}$ . |
| 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | matrix inversion if the graph is sparse.                                                                                                                                                                                                                                                                                                                                                                                                                                              |





## Sum of the pairwise variances

## Sum of variances in whole design if $\Gamma$ is equi-replicate

Theorem (cf. Herzberg and Jarrett, 2007) *If there are n drones in each block of*  $\Delta$ *,* and the core design  $\Gamma$  has v' varieties in b blocks of size k'

then the sum of the variances of variety differences in  $\Delta$ 

 $= V_T(\Delta) = bn(bn + v' - 1) + V_T + nV_{BT} + n^2V_B,$ where

$$V_{T}$$
 = the sum of the variances of variety differences in  $\Gamma$ 

 $V_B = the sum of the variances of block differences in \Gamma$ 

 $V_{BT}$  = the sum of the variances of sums of one treatment and one block in  $\Gamma$ .

## $V_T(\Delta) = bn(bn + v' - 1) + V_T + nV_{BT} + n^2V_B$

 $V_T$  = the sum of the variances of variety differences in  $\Gamma$ 

 $V_B$  = the sum of the variances of block differences in  $\Gamma$ 

 $V_{BT}$  = the sum of the variances of sums of one treatment and one block in  $\Gamma$ .

If  $\Gamma$  is equi-replicate with replication r' then

$$\begin{array}{lll} \frac{k'}{b}V_B - b &=& \frac{r'}{v'}V_T - v';\\ V_{BT} &=& \frac{2b}{v'}V_T + \frac{v'}{k'}(b - v' - 1), \end{array}$$

and so  $V_B$  and  $V_{BT}$  are both increasing functions of  $V_T$ .

#### Consequence

For a given choice of k', use the core design  $\Gamma$  which minimizes  $V_T$ .

| Sum of variances in whole design if there are many drones                                                                                                                                                                                                                                                                                                             | Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_T(\Delta) = bn(bn + v' - 1) + V_T + nV_{BT} + n^2V_B$ $V_T = \text{the sum of the variances of variety differences in } \Gamma$ $V_B = \text{the sum of the variances of block differences in } \Gamma$ $V_{BT} = \text{the sum of the variances of sums of one treatment and one block in } \Gamma.$ Consequence If n is large, we need to focus on reducing V_B, | Given <i>b</i> , <i>v</i> and <i>k</i> , how do we find an A-optimal design<br>for <i>v</i> varieties in <i>b</i> blocks of size <i>k</i> when<br>$\frac{bk}{2} \le v \le b(k-1) + 1?$ Average replication $\le 2$ Maximum <i>v</i> for estimability<br>Case 1. <i>b</i> = 2 or <i>b</i> = 3 (very small <i>b</i> ).<br>Case 2. <i>v</i> = <i>b</i> ( <i>k</i> - 1) + 1 (very large <i>v</i> ).<br>Case 3. <i>v</i> = <i>b</i> ( <i>k</i> - 1) (very large <i>v</i> ). |
| so it may be best to increase the number of drones<br>and decrease k' (the size of blocks in the core design $\Gamma$ ),<br>so that average replication within $\Gamma$ is more than 2.                                                                                                                                                                               | Case 4. $k < b - 1$ (small k).<br>Case 5. $k \ge b - 1$ .                                                                                                                                                                                                                                                                                                                                                                                                              |

21/48

| Case 1. Only 2 blocks, of size k                                                                                                                                                                                       | Case 1 continued. 3 blocks of size k                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Morgan and Jin (2007) showed that the A-optimal designs are<br>those with 2 <i>n</i> drones and <i>q</i> queen bees,<br>where $q = 2k - v$ and $n = k - q$ .<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Using exhaustive (and exhausting (and tedious)) case-by-case analysis, RAB has shown that the A-optimal designs are as follows when <i>v</i> is divisible by 3 (and presumably small changes deal with the other cases). There are $3w$ workers and $3n$ drones, where $3w = 3k - v$ and $n = k - 2w$ . |
| They also showed that, when $2k - v$ is comparatively large, the MV-optimal designs (those designs that minimize the maximum of the pairwise variances $V_{ij}$ ) have all the drones in the same block.               | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                  |

22/48

# Case 2. v = b(k-1) + 1

This is the maximum number of varieties that can be tested in  $\boldsymbol{b}$  blocks of size  $\boldsymbol{k}$  with all comparisons estimable.

Mandal, Shah and Sinha (1991), for k = 2, and Bailey and Cameron (2013), for general block size, showed that, no matter how many blocks there are, the A-optimal design has the following form.

| 1       | $A_1$ | $A_2$                 | $A_3$                 |       | $A_{k-1}$ |
|---------|-------|-----------------------|-----------------------|-------|-----------|
| 1       | $B_1$ | B <sub>2</sub>        | B <sub>3</sub>        |       | $B_{k-1}$ |
| 1       | $C_1$ | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> |       | $C_{k-1}$ |
| 1       | $D_1$ | D <sub>2</sub>        | D <sub>3</sub>        |       | $D_{k-1}$ |
| 1       | $E_1$ | <i>E</i> <sub>2</sub> | <i>E</i> <sub>3</sub> |       | $E_{k-1}$ |
| 1 queen |       | <i>v</i> -            | - 1 dı                | rones | ;         |

# Case 3. v = b(k-1)

| The A-optimal design<br>by Krafft and Schaefe<br>small <i>k</i> and <i>b</i> | er (1997).                                             | r all cases<br>then increase b                          |
|------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Youden and Connor (1953) had recommended chain designs.

| Case 3. $v = b(k-1)$ revisited                                                                                                                                                                                                                                                                                                | Case 4. $k < b-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Theorem</b><br>Consider a design with b blocks of size 2. For $2 \le s \le b$ , let $\Gamma_s$ be the design consisting of a chain of length s, one of whose varieties is in all blocks outside the chain, while all other varieties are drones. Then $V_B(\Gamma_s) = \frac{1}{6}[-s^3 + 2bs^2 - (6b - 4)s + 6b^2 - 5b].$ | For various values of $k_i \leq k$ ,<br>find the best core design $\Gamma_i$ for $v'_i$ varieties in <i>b</i> blocks of size $k_i$ .<br>(For equi-replicate core designs,<br>it is often easier to find the best dual design, which is obtained<br>by interchanging the roles of blocks and varieties.)<br>$V_T(\Gamma_i) =$ the sum of the variances of variety differences in $\Gamma_i$<br>$V_B(\Gamma_i) =$ the sum of the variances of block differences in $\Gamma_i$ |
| Consequence<br>1. If $b = 3$ then $V_B(\Gamma_2) > V_B(\Gamma_3)$ so there is no need for queens.                                                                                                                                                                                                                             | $V_{BT}(\Gamma_i)$ = the sum of the variances of sums of one treatment and one block in $\Gamma_i$ .                                                                                                                                                                                                                                                                                                                                                                        |
| 2. If $b = 4$ then $V_B(\Gamma_2) = V_B(\Gamma_4) < V_B(\Gamma_3)$ ,<br>but $V_T(\Gamma_2) > V_T(\Gamma_4)$ and $V_{BT}(\Gamma_2) > V_{BT}(\Gamma_4)$ ,<br>so do not use $\Gamma_2$ or $\Gamma_3$ (no need for queens).                                                                                                       | If there are $n_i$ drones in each block then, in the whole design $\Delta$ ,<br>$V_T(\Delta) = bn_i(bn_i + v'_i - 1) + V_T(\Gamma_i) + n_i V_{BT}(\Gamma_i) + n_i^2 V_B(\Gamma_i)$                                                                                                                                                                                                                                                                                          |
| 3. If $b \ge 5$ then $V_B(\Gamma_2) < V_B(\Gamma_3) < \cdots < V_B(\Gamma_b)$ ,<br>so we need to use smaller chains as $v$ gets larger.                                                                                                                                                                                       | Use this formula to find the core design with the smallest $V_T(\Delta)$ .                                                                                                                                                                                                                                                                                                                                                                                                  |

| Case 4 continued. $k < b - 1$                                                                                                                                                                                                                                                                                                                          | Case 4 cor                                                                                                | ntinued. $k =$                           | $= 4 < b - 1, V_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $_{3} \div b(b -$ | 1)/2                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| Case 4 continued. $k < b - 1$<br>If there are $n_i$ drones in each block then, in the whole design $\Delta$ ,<br>$V_T(\Delta) = bn_i(bn_i + v'_i - 1) + V_T(\Gamma_i) + n_i V_{BT}(\Gamma_i) + n_i^2 V_B(\Gamma_i)$<br>As the number of varieties increases, it becomes more<br>important to choose $\Gamma_i$ with a small value of $V_B(\Gamma_i)$ . | Case 4 con<br>$k_i$<br>b = 6<br>b = 7<br>b = 8<br>b = 9<br>b = 10<br>b = 11<br>b = 12<br>b = 13<br>b = 14 | Best<br>Γ <sub>1</sub><br>2<br>2 queens, | $= 4 < b - 1, V_{1}$ a design for <i>b</i> blocks<br>$\Gamma_{2}$<br>3<br>2 queens,<br>2 workers (rep 2)<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$<br>$1^{-}$ |                   |                          |
| 25/4                                                                                                                                                                                                                                                                                                                                                   | If $b \ge 14$                                                                                             |                                          | $1^-$<br>omes better than $\Gamma_4$<br>creases, $\Gamma_1$ and $\Gamma_2$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 1.08 r than $\Gamma_3$ . |

| Case 4 continued. $k < b-1$ when $b=8$                                                                                               | Case 4 continued. $k = 5$ and $k = 6$ when $b =$       | = 8 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----|
| $k = 6, \text{ and } 24 \text{ varieties, all workers, all replicated twice.}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |     |

| Case 4 continued. $k = 5$ and<br>k = 5<br>24 varieties:<br>16 workers, 8 drones<br>1 2 3 4 $A_1$<br>5 6 7 8 $B_1$<br>9 10 11 12 $C_1$<br>13 14 15 16 $D_1$ | k = 6  when  b = 8<br>k = 6<br>32 varieties:<br>8 workers, 24 drones<br>$1 2 4 A_1 A_2 A_3$<br>$2 3 5 B_1 B_2 B_3$<br>$3 4 6 C_1 C_2 C_3$<br>$4 5 7 D_1 D_2 D_3$ | Case 4 continued. $k = 5$ and<br>k = 5<br>28 varieties:<br>12 workers, 16 drones<br>$1 \ 2 \ 3 \ A_1 \ A_2$<br>$1 \ 4 \ 5 \ B_1 \ B_2$<br>$4 \ 6 \ 7 \ C_1 \ C_2$ | d $k = 6$ when $b = 8$<br>k = 6<br>36 varieties:<br>12 workers, 24 drones<br>$1 2 3 A_1 A_2 A_3$<br>$1 4 5 B_1 B_2 B_3$<br>$4 6 7 C_1 C_2 C_3$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                             | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                         |

| Now we are also in Case 3 aga                                                                                                                                                                                      | ain!                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k = 5 32 varieties:<br>1 queen, 1 worker,<br>30 drones $1 2 A_1 A_2 A_3$ $1 2 B_1 B_2 B_3$ $1 C_1 C_2 C_3 C_4$ $1 D_1 D_2 D_3 D_4$ $1 E_1 E_2 E_3 E_4$ $1 F_1 F_2 F_3 F_4$ $1 G_1 G_2 G_3 G_4$ $1 H_1 H_2 H_3 H_4$ | k = 6 40 varieties:<br>1 queen, 1 worker,<br>38 drones $1 2 A_1 A_2 A_3 A_4$ $1 2 B_1 B_2 B_3 B_4$ $1 C_1 C_2 C_3 C_4 C_5$ $1 D_1 D_2 D_3 D_4 D_5$ $1 E_1 E_2 E_3 E_4 E_5$ $1 E_1 E_2 F_3 F_4 F_5$ $1 G_1 G_2 G_3 G_4 G_5$ $1 H_1 H_2 H_3 H_4 H_5$ | Now $v \ge \frac{bk}{2} \ge \frac{b(b-1)}{2}$ .<br>For simplicity, assume that <i>b</i> divides 2 <i>v</i> , and put<br>$n = \frac{2v - bk}{b}$ .<br>Then <i>n</i> is the minimum number of drones per block.<br>Let $\Gamma_0$ be the design for $b(b-1)/2$ varieties<br>replicated twice in <i>b</i> blocks of size $b - 1$<br>in such a way that<br>there is one variety in common to each pair of blocks.<br>This is A-optimal for these numbers. |

| Case 5 continued. $k \geq b-1$ and $v \geq b(b-1)/2$                                                                                            | Case 5. Example: $b=8$ and $k=15$ (so $60 \le v \le 113$ )                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n = minimal number of drones per block.                                                                                                         | 60 varieties: all workers                                                                                                                                   |
| If $k - n \ge b - 1$ then                                                                                                                       |                                                                                                                                                             |
| 1. put n drones in each block;                                                                                                                  | 1 2 3 4 5 6 7 29 30 31 32 33 34 35 57                                                                                                                       |
| <ol> <li><i>put in one copy of</i> Γ<sub>0</sub>;</li> <li><i>put in as many further copies of</i> Γ<sub>0</sub> <i>as possible;</i></li> </ol> | 1         8         9         10         11         12         13         29         36         37         38         39         40         41         57   |
| 4. in any remaining space,                                                                                                                      | 2       8       14       15       16       17       18       30       36       42       43       44       45       46       58                              |
| use a good design for workers with replication 2 (so long as there is at least one copy of $\Gamma_0$ ,                                         | 3 9 14 19 20 21 22 31 37 42 47 48 49 50 58                                                                                                                  |
| it probably doesn't make much difference which                                                                                                  | 4       10       15       19       23       24       25       32       38       43       47       51       52       53       59                             |
| one is used).                                                                                                                                   | 5 11 16 20 23 26 27 33 39 44 48 51 54 55 59                                                                                                                 |
| Otherwise we are back in the same situation as Case 4 ( $k < b - 1$ ),                                                                          | 6         12         17         21         24         26         28         34         40         45         49         52         54         56         60 |
| but there are more drones necessary<br>so it is more likely that we will have to move towards a                                                 | 7 13 18 22 25 27 28 35 41 46 50 53 55 56 60                                                                                                                 |
| core design with replication 3 or more, or even queens.                                                                                         | one copy of $\Gamma_0$ another copy of $\Gamma_0$                                                                                                           |

| Case 5. Example: $b = 8$ and $k = 15$ (so $60 \le v \le 113$ ) | Case 5. Example: $b=8$ and $k=15$ (so $60 \le v \le 113$ ) |
|----------------------------------------------------------------|------------------------------------------------------------|
| 76 varieties: 44 workers, 32 drones                            | 92 varieties: 28 workers, 64 drones                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$     |
| 39/48                                                          | 40/48                                                      |

| Case 5. Example: $b=8$ and $k=15$ (so $60 \le v \le 113$ ) | Case 5. Example: $b=8$ and $k=15$ (so $60 \le v \le 113)$  |
|------------------------------------------------------------|------------------------------------------------------------|
| 104 varieties: 8 workers, 96 drones                        | 108 varieties: 4 workers, 104 drones                       |
| (not 16 workers and 88 drones;                             | (not 12 workers and 96 drones;                             |
| this is the phase-change that we saw before with $k = 6$ ) | the larger block size forces us past another phase change) |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    |
| workers drones                                             | workers drones                                             |
| rep. 3                                                     | rep. 4                                                     |

| Health Warning                                                                                                                                                                                                                                                                                                                                                   | References: more even replication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The overall message is that there can be phase changes as the spare capacity for replication $(bk - v)$ decreases.<br>Therefore it is necessary to compare core designs $\Gamma_i$ with different block size $k_i$ .<br>Although this overall message is correct, no one has checked the arithmetic in the examples presented, so individual cases may be wrong. | <ol> <li>J. S. S. Bueno Filho and S. G. Gilmour:<br/>Planning incomplete block experiments when treatments<br/>are genetically related.<br/><i>Biometrics</i>, <b>59</b>, (2003), 375–381.</li> <li>B. R. Cullis, A. B. Smith and N. E. Coombes:<br/>On the design of early generation variety trials with<br/>correlated data.<br/><i>Journal of Agricultural, Biological and Environmental<br/>Statistics</i>, <b>11</b>, (2006), 381–393.</li> <li>A. B. Smith, P. Lim and B. R. Cullis:<br/>The design and analysis of multi-phase plant breeding<br/>experiments.<br/><i>Journal of Agricultural Science</i>, <b>144</b>, (2006), 393–409.</li> </ol> |

| References: Levi graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | References: core designs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>F. W. Levi: <i>Finite Geometrical Systems</i>, University of<br/>Calcutta, Calcutta, 1942. iii + 51 pp.</li> <li>N. Gaffke: <i>Optimale Versuchsplanung für linear Zwei-Faktor</i><br/><i>Modelle</i>. PhD thesis, Rheinisch-Westfälische Technische<br/>Hochschule, Aachen, 1978.</li> <li>N. Gaffke:<br/>D-optimal block designs with at most six varieties, <i>Journal</i><br/><i>of Statistical Planning and Inference</i>, 6 (1982), 183–200.</li> <li>T. Tjur:<br/>Block designs and electrical networks,<br/><i>Annals of Statistics</i>, 19 (1991), 1010–1027.</li> <li>R. A. Bailey and P. J. Cameron:<br/>Using graphs to find the best block designs.<br/>In <i>Topics in Structural Graph Theory</i> (eds. L. W. Beineke and<br/>R. J. Wilson), Cambridge University Press, Cambridge,<br/>2013, pp. 282–317.</li> </ol> | <ol> <li>W. J. Youden and W. S. Connor:<br/>The chain block design.<br/><i>Biometrics</i>, 9, (1953), 127–140.</li> <li>A. M. Herzberg and D. F. Andrews:<br/>The robustness of chain block designs and coat-of-mail<br/>designs.<br/><i>Communications in Statistics—Theory and Methods</i>, 7 (1978),<br/>479–485.</li> <li>A. M. Herzberg and R. G. Jarrett:<br/>A-optimal block designs with additional singly replicated<br/>treatments.<br/><i>Journal of Applied Statistics</i>, 34 (2007), 61–70.</li> </ol> |

| References: few blocks                                                                                                                                      | References: (nearly) maximal number of varieties                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>J. P. Morgan and B. Jin:<br/>Optimal experimentation in two blocks.<br/>Journal of Statistical Theory and Practice, 1, (2007), 357–375.</li> </ol> | <ol> <li>N. K. Mandal, K. R. Shah and B. K. Sinha:<br/>Uncertain resources and optimal designs: problems and<br/>perspectives.<br/><i>Calcutta Statistical Association Bulletin</i>, 40, (1991), 267–282.</li> <li>O. Krafft and M. Schaefer:<br/>A-optimal connected block designs with nearly minimal<br/>number of observations.<br/><i>Journal of Statistical Planning and Inference</i>, 65, (1997),<br/>357–386.</li> </ol> |