

The problem

Linear model, estimation and variance

We measure the response Y on each unit in each block.
If that unit has variety i and block D, then we assume that

$$
Y=\tau_{i}+\beta_{D}+\text { random noise },
$$

where the random noise is independently normally distributed with zero mean and constant variance σ^{2}.

We want to estimate all the simple differences $\tau_{i}-\tau_{j}$.
Put

$$
V_{i j} \sigma^{2}=\begin{aligned}
& \text { variance of the best linear unbiased estimator } \\
& \text { for } \tau_{i}-\tau_{j} \text {. }
\end{aligned}
$$

We want all the $V_{i j}$ to be small.

Optimality

Apart from the constant multiple σ^{2},

$$
V_{i j}=\text { variance of the BLUE for } \tau_{i}-\tau_{j} .
$$

Put
$V_{T}=\sum_{i=1}^{v-1} \sum_{j=i+1}^{v} V_{i j}=$ sum of variances of variety differences.

Definition
For given values of b (the number of blocks),
k (the size of the blocks) and v (the number of varieties),
a block design is A-optimal if it minimizes V_{T}.

An example with $5 n+10$ varieties in 5 blocks of size $4+n$

1	2	3	4	A_{1}	\cdots	A_{n}
3	4	5	6	B_{1}	\cdots	B_{n}
5	6	7	8	C_{1}	\cdots	C_{n}
7	8	9	0	D_{1}	\cdots	D_{n}
9	0	1	2	E_{1}	\cdots	E_{n}

How do we calculate pairwise variances in a generic design?

Levi graph	Levi graph: example
The Levi graph of the block design has - one vertex for each variety - one vertex for each block - one edge for each plot (aka experimental unit), so that the edge for plot ω joins the vertex for the variety on ω to the vertex for the block containing ω.	1 2 3 4 A_{1} \cdots A_{n} 1 5 6 7 B_{1} \cdots B_{n} 2 5 8 9 C_{1} \cdots C_{n} 3 6 8 0 D_{1} \cdots D_{n} 4 7 9 0 E_{1} \cdots E_{n}

Electrical networks

We can consider the Levi graph as an electrical network with a 1 -ohm resistance in each edge.
Connect a 1 -volt battery between vertices i and j.
Current flows in the network, according to these rules.

1. Ohm's Law:

In every edge,
voltage drop $=$ current \times resistance $=$ current.
2. Kirchhoff's Voltage Law:

The total voltage drop from one vertex to any other vertex is the same whichever path we take from one to the other.
3. Kirchhoff's Current Law:

At every vertex which is not connected to the battery,
the total current coming in is equal to the total current going out.
Find the total current I from i to j, then use Ohm's Law to define the effective resistance $R_{i j}$ between i and j as $1 / I$.

Electrical networks: variance

Reminder: $V_{i j}=$ variance of BLUE of $\tau_{i}-\tau_{j}$ for varieties i and j.
Theorem
If $R_{i j}$ is the effective resistance between variety vertices i and j in the Levi graph then

$$
R_{i j}=V_{i j} .
$$

Put: $V_{C D}=$ variance of BLUE of $\beta_{C}-\beta_{D}$ for blocks C and D, $V_{i C}=$ variance of BLUE of $\tau_{i}+\beta_{C}$ for variety i and block C.

Theorem
If $R_{C D}$ and $R_{i C}$ are the effective resistances between vertices C and D, and between i and C respectively, in the Levi graph then

$$
R_{C D}=V_{C D} \quad \text { and } \quad R_{i C}=V_{i C} .
$$

Effective resistances are easy to calculate without matrix inversion if the graph is sparse.

Pairwise resistance (Remove A_{1}, \ldots, E_{n} to get Γ)	Silly names just for this talk
	Definition Call a variety a a drone if it has replication 1 ; a queen-bee if it occurs in every block; a worker otherwise. Is it better to put all the drones into one block (or a few blocks), or are they better distributed equally among all the blocks?

How should we distribute the drones?	From now on, distribute drones as equally as possible
If we move all the drones in block B into block A then we reduce $n m$ variances from $2+R_{A B}$ to 2 . Then we have to remove m non-drones from block A, and this increases the resistance between A and the rest of the graph. This increases the variances between these $n+m$ drones and the remaining $v-n-m$ varieties. This more than compensates for the original reduction in variance.	 Whole design Δ has v treatments in b blocks of size $k=k^{\prime}+n$; the subdesign Γ has v^{\prime} core varieties in b blocks of size k^{\prime}. (The core varieties may include extra drones.)

Sum of the pairwise variances

Theorem (cf. Herzberg and Jarrett, 2007)
If there are n drones in each block of Δ, and the core design Γ has v^{\prime} varieties in blocks of size k^{\prime} then the sum of the variances of variety differences in Δ

$$
=V_{T}(\Delta)=b n\left(b n+v^{\prime}-1\right)+V_{T}+n V_{B T}+n^{2} V_{B}
$$

where
$V_{T}=$ the sum of the variances of variety differences in Γ
$V_{B}=$ the sum of the variances of block differences in Γ
$V_{B T}=$ the sum of the variances of sums of one treatment and one block in Γ.

$$
V_{T}(\Delta)=b n\left(b n+v^{\prime}-1\right)+V_{T}+n V_{B T}+n^{2} V_{B}
$$

$V_{T}=$ the sum of the variances of variety differences in Γ
$V_{B}=$ the sum of the variances of block differences in Γ
$V_{B T}=$ the sum of the variances of sums of one treatment and one block in Γ.

If Γ is equi-replicate with replication r^{\prime} then

$$
\begin{aligned}
\frac{k^{\prime}}{b} V_{B}-b & =\frac{r^{\prime}}{v^{\prime}} V_{T}-v^{\prime} ; \\
V_{B T} & =\frac{2 b}{v^{\prime}} V_{T}+\frac{v^{\prime}}{k^{\prime}}\left(b-v^{\prime}-1\right),
\end{aligned}
$$

and so V_{B} and $V_{B T}$ are both increasing functions of V_{T}.
Consequence
For a given choice of k^{\prime}, use the core design Γ which minimizes V_{T}.

Sum of variances in whole design if there are many drones	Strategy
$\begin{aligned} & V_{T}(\Delta)=b n\left(b n+v^{\prime}-1\right)+V_{T}+n V_{B T}+n^{2} V_{B} \\ V_{T}= & \text { the sum of the variances of variety differences in } \Gamma \\ V_{B}= & \text { the sum of the variances of block differences in } \Gamma \\ V_{B T}= & \text { the sum of the variances of sums of } \\ & \text { one treatment and one block in } \Gamma . \end{aligned}$ Consequence If n is large, we need to focus on reducing V_{B}, so it may be best to increase the number of drones and decrease k^{\prime} (the size of blocks in the core design Γ), so that average replication within Γ is more than 2 .	Given b, v and k, how do we find an A-optimal design for v varieties in b blocks of size k when $\frac{b k}{2} \leq v \leq b(k-1)+1 ?$ Average replication ≤ 2 Maximum v for estimability Case 1. $b=2$ or $b=3$ (very small b). Case 2. $v=b(k-1)+1$ (very large $v)$. Case 3. $v=b(k-1)$ (very large v). Case 4. $k<b-1$ (small k). Case 5. $k \geq b-1$.

Case 1. Only 2 blocks, of size k

Morgan and Jin (2007) showed that the A-optimal designs are those with $2 n$ drones and q queen bees,
where $q=2 k-v$ and $n=k-q$.

1		2	3	4		.	9		A_{1}	A_{2}	A_{3}	...		A_{n}
1		2	3	4		\ldots	9		B_{1}	B_{2}	B_{3}	.		B_{n}
queens											dron			

They also showed that, when $2 k-v$ is comparatively large, the MV-optimal designs (those designs that minimize the maximum of the pairwise variances $V_{i j}$) have all the drones in the same block.

Case 1 continued. 3 blocks of size k

Using exhaustive (and exhausting (and tedious)) case-by-case analysis, RAB has shown that the A-optimal designs are as follows when v is divisible by 3 (and presumably small changes deal with the other cases). There are $3 w$ workers and $3 n$ drones,
where $3 w=3 k-v$ and $n=k-2 w$.

1	2	4	5	\ldots	$3 w-2$	$3 w-1$	A_{1}	A_{2}	A_{3}		A_{n}
1	3	4	6	\ldots	$3 w-2$	$3 w$	B_{1}	B_{2}	B_{3}	\ldots	B_{n}
2	3	5	6	\ldots	$3 w-1$	$3 w$	C_{1}	C_{2}	C_{3}	\ldots	C_{n}
	w copies of design using all pairs from 3						drones				

Case 2. $v=b(k-1)+1$
This is the maximum number of varieties that can be tested in b blocks of size k with all comparisons estimable.
Mandal, Shah and Sinha (1991), for $k=2$,
and Bailey and Cameron (2013), for general block size, showed that, no matter how many blocks there are, the A-optimal design has the following form.

1	A_{1}	A_{2}	A_{3}	\ldots	A_{k-1}	
1	B_{1}	B_{2}	B_{3}	\ldots	B_{k-1}	
1	C_{1}	C_{2}	C_{3}	\ldots	C_{k-1}	
1	D_{1}	D_{2}	D_{3}	\ldots	D_{k-1}	
1	E_{1}	E_{2}	E_{3}	\ldots	E_{k-1}	
1 queen	$v-1$ drones					

Case 3. $v=b(k-1)$

The A-optimal designs were found for all cases by Krafft and Schaefer (1997).

sma	l k	and b			rease			n in	reas	
1	2	A_{1}	1	2	A_{1}	A_{2}	1	2	A_{1}	A_{2}
2	3	B_{1}	2	3	B_{1}	B_{2}	1	2	B_{1}	B_{2}
3	4	C_{1}	3	1	C_{1}	C_{2}	1	C_{1}	C_{2}	C_{3}
4	5	D_{1}	1	D_{1}	D_{2}	D_{3}	1	D_{1}	D_{2}	D_{3}
5	6	E_{1}	1	E_{1}	E_{2}	E_{3}	1	E_{1}	E_{2}	E_{3}
6	1	F_{1}	1	F_{1}	F_{2}	F_{3}	1	F_{1}	F_{2}	F_{3}
chain			small chain				1 queen		G_{2}	G_{3}

Youden and Connor (1953) had recommended chain designs.

Case 4. $k<b-1$

For various values of $k_{i} \leq k$,
find the best core design Γ_{i} for v_{i}^{\prime} varieties in b blocks of size k_{i}. (For equi-replicate core designs,
it is often easier to find the best dual design, which is obtained by interchanging the roles of blocks and varieties.)
$V_{T}\left(\Gamma_{i}\right)=$ the sum of the variances of variety differences in Γ_{i}
$V_{B}\left(\Gamma_{i}\right)=$ the sum of the variances of block differences in Γ_{i}
$V_{B T}\left(\Gamma_{i}\right)=$ the sum of the variances of sums of one treatment and one block in Γ_{i}.

If there are n_{i} drones in each block then, in the whole design Δ,

$$
V_{T}(\Delta)=b n_{i}\left(b n_{i}+v_{i}^{\prime}-1\right)+V_{T}\left(\Gamma_{i}\right)+n_{i} V_{B T}\left(\Gamma_{i}\right)+n_{i}^{2} V_{B}\left(\Gamma_{i}\right)
$$

Use this formula to find the core design with the smallest $V_{T}(\Delta)$.

Case 4 continued. $k<b-1$

If there are n_{i} drones in each block then, in the whole design Δ,

$$
V_{T}(\Delta)=b n_{i}\left(b n_{i}+v_{i}^{\prime}-1\right)+V_{T}\left(\Gamma_{i}\right)+n_{i} V_{B T}\left(\Gamma_{i}\right)+n_{i}^{2} V_{B}\left(\Gamma_{i}\right)
$$

As the number of varieties increases, it becomes more important to choose Γ_{i} with a small value of $V_{B}\left(\Gamma_{i}\right)$.

Case 4 continued. $k=4<b-1, V_{B} \div b(b-1) / 2$

k_{i}	Best design for b blocks known to RAB			
	Γ_{1}	Γ_{2}	Γ_{3}	Γ_{4}
	2	3	3	4
	2 queens,	2 queens,	b workers	$2 b$ workers
	both boring	2 workers (rep 2)	rep 3	rep 2
$b=6$	1	1^{-}	0.85	0.87
$b=7$	1	1^{-}	0.86	0.92
$b=8$	1	1^{-}	0.89	0.93
$b=9$	1	1^{-}	0.92	
$b=10$	1	1^{-}		
$b=11$	1	1^{-}		
$b=12$	1	1^{-}	0.98	
$b=13$	1	1^{-}	1	1.07
$b=14$	1	1^{-}		
$b=15$	1	1^{-}	1.01	1.08

As v increases, Γ_{3} becomes better than Γ_{4}.
If $b \geq 14$, then, as v increases, Γ_{1} and Γ_{2} become better than Γ_{3}.

Case 4 continued. $k<b-1$ when $b=8$
$k=6$, and 24 varieties, all workers, all replicated twice.

1	2	3	4	5	6
7	8	9	10	11	12
1	7	13	14	15	16
2	8	17	18	19	20
3	9	13	17	21	22
4	10	14	18	23	24
5	11	15	19	21	23
6	12	16	20	22	24

(One worker for each pair of blocks
except for $\{A, B\},\{C, D\},\{E, F\}$ and $\{G, H\}$.)

Case 4 continued. $k=5$ and $k=6$ when $b=8$

$k=5$ 20 varieties: 20 workers, no drones					$k=6$ 28 varieties: 20 workers, 8 drones					
1	2	3	4	5	1	2	3	4	5	A_{1}
6	7	8	9	10	6	7	8	9	10	B_{1}
1	11	12	13	14	1	11	12	13	14	C_{1}
2	6	15	16	17	2	6	15	16	17	D_{1}
3	7	11	18	19	3	7	11	18	19	E_{1}
4	8	12	15	20	4	8	12	15	20	F_{1}
5	9	13	16	18	5	9	13	16	18	G_{1}
10	14	17	19	20	10	14	17	19	20	H_{1}

$k=6$
28 varieties:

Case 4 continued. $k=5$ and $k=6$ when $b=8$
Now we are also in Case 3 again!

$$
k=5
$$

32 varieties:
1 queen, 1 worker, 30 drones

1	2	A_{1}	A_{2}	A_{3}
1	2	B_{1}	B_{2}	B_{3}
1	C_{1}	C_{2}	C_{3}	C_{4}
1	D_{1}	D_{2}	D_{3}	D_{4}
1	E_{1}	E_{2}	E_{3}	E_{4}
1	F_{1}	F_{2}	F_{3}	F_{4}
1	G_{1}	G_{2}	G_{3}	G_{4}
1	H_{1}	H_{2}	H_{3}	H_{4}

$$
k=6
$$

40 varieties:
1 queen, 1 worker, 38 drones

1	2	A_{1}	A_{2}	A_{3}	A_{4}

1	2	B_{1}	B_{2}	B_{3}	B_{4}

1	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}

1	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}

1	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}

1	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}

1	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}

1	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

Case 5. $k \geq b-1$

$$
\text { Now } v \geq \frac{b k}{2} \geq \frac{b(b-1)}{2}
$$

For simplicity, assume that b divides $2 v$, and put

$$
n=\frac{2 v-b k}{b}
$$

Then n is the minimum number of drones per block.
Let Γ_{0} be the design for $b(b-1) / 2$ varieties
replicated twice in b blocks of size $b-1$
in such a way that
there is one variety in common to each pair of blocks.
This is A-optimal for these numbers.

Case 5 continued. $k \geq b-1$ and $v \geq b(b-1) / 2$
$n=$ minimal number of drones per block.
Construction Method
If $k-n \geq b-1$ then

1. put n drones in each block;
2. put in one copy of Γ_{0};
3. put in as many further copies of Γ_{0} as possible;
4. in any remaining space,
use a good design for workers with replication 2 (so long as there is at least one copy of Γ_{0}, it probably doesn't make much difference which one is used).
Otherwise we are back in the same situation as Case 4 ($k<b-1$), but there are more drones necessary
so it is more likely that we will have to move towards a core design with replication 3 or more, or even queens.

Case 5. Example: $b=8$ and $k=15$ (so $60 \leq v \leq 113$)
60 varieties: all workers

1	2	3	4	5	6	7	29	30	31	32	33	34	35	57
1	8	9	10	11	12	13	29	36	37	38	39	40	41	57
2	8	14	15	16	17	18	30	36	42	43	44	45	46	58
3	9	14	19	20	21	22	31	37	42	47	48	49	50	58
4	10	15	19	23	24	25	32	38	43	47	51	52	53	59
5	11	16	20	23	26	27	33	39	44	48	51	54	55	59
6	12	17	21	24	26	28	34	40	45	49	52	54	56	60
7	13	18	22	25	27	28	35	41	46	50	53	55	56	60
one copy of Γ_{0}							another copy of Γ_{0}							

Case 5. Example: $b=8$ and $k=15$ (so $60 \leq v \leq 113$)
76 varieties: 44 workers, 32 drones

1	2	3	4	5	6	7	29	30	31	32	A_{1}	A_{2}	A_{3}	A_{4}
1	8	9	10	11	12	13	33	34	35	36	B_{1}	B_{2}	B_{3}	B_{4}
2	8	14	15	16	17	18	37	38	39	40	C_{1}	C_{2}	C_{3}	C_{4}
3	9	14	19	20	21	22	41	42	43	44	D_{1}	D_{2}	D_{3}	D_{4}
4	10	15	19	23	24	25	29	33	37	41	E_{1}	E_{2}	E_{3}	E_{4}
5	11	16	20	23	26	27	30	34	38	42	F_{1}	F_{2}	F_{3}	F_{4}
6	12	17	21	24	26	28	31	35	39	43	G_{1}	G_{2}	G_{3}	G_{4}
7	13	18	22	25	27	28	32	36	40	44	H_{1}	H_{2}	H_{3}	H_{4}
Γ_{0}							16 workers replication 2				drones			

Case 5. Example: $b=8$ and $k=15$ (so $60 \leq v \leq 113$)
92 varieties: 28 workers, 64 drones

1	2	3	4	5	6	7	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}
1	8	9	10	11	12	13	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}
2	8	14	15	16	17	18	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}
3	9	14	19	20	21	22	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}
4	10	15	19	23	24	25	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}
5	11	16	20	23	26	27	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}
6	12	17	21	24	26	28	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}
7	13	18	22	25	27	28	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}	H_{8}
Γ_{0}							ones							

Case 5. Example: $b=8$ and $k=15$ (so $60 \leq v \leq 113$)
104 varieties: 8 workers, 96 drones
(not 16 workers and 88 drones;
this is the phase-change that we saw before with $k=6$)

1	2	4	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	A_{11}	A_{12}
2	$2{ }^{2}$	5	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B9	B_{10}	B_{11}	B_{12}
3	4	6	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}	C_{11}	${ }_{12}$
4	5	7	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}
5	516	8	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}	E_{9}	E_{10}	E_{11}	E_{12}
6	6 7	1	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}
7	78	2	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G9	G_{10}	G_{11}	G_{12}
8	81	3	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}	H_{8}	H_{9}	H_{10}	H_{11}	H_{12}
workers rep. 3														

Case 5. Example: $b=8$ and $k=15$ (so $60 \leq v \leq 113$)
108 varieties: 4 workers, 104 drones
(not 12 workers and 96 drones;
the larger block size forces us past another phase change)

1	2	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	A_{11}	A_{12}	A_{13}
1	2	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}	B_{10}	B_{11}	B_{12}	B_{13}
3	4	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C9	C_{10}	C_{11}	C_{12}	C_{13}
3	4	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}	D_{13}
1	3	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}	E_{9}	E_{10}	E_{11}	E_{12}	E_{13}
2	4	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}
1	4	G_{1}	G_{2}	G_{3}	G_{4}	G5	G_{6}	G_{7}	G_{8}	G9	G_{10}	G_{11}	G_{12}	G_{13}
2	3	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}	H_{8}	H_{9}	H_{10}	H_{11}	H_{12}	H_{13}
workers rep. 4		drones												

Health Warning	References: more even replication
The overall message is that there can be phase changes as the spare capacity for replication $(b k-v)$ decreases. Therefore it is necessary to compare core designs Γ_{i} with different block size k_{i}. Although this overall message is correct, no one has checked the arithmetic in the examples presented, so individual cases may be wrong.	1. J. S. S. Bueno Filho and S. G. Gilmour: Planning incomplete block experiments when treatments are genetically related. Biometrics, 59, (2003), 375-381. 2. B. R. Cullis, A. B. Smith and N. E. Coombes: On the design of early generation variety trials with correlated data. Journal of Agricultural, Biological and Environmental Statistics, 11, (2006), 381-393. 3. A. B. Smith, P. Lim and B. R. Cullis: The design and analysis of multi-phase plant breeding experiments. Journal of Agricultural Science, 144, (2006), 393-409.

References: Levi graph	References: core designs
1. F. W. Levi: Finite Geometrical Systems, University of Calcutta, Calcutta, 1942. iii + 51 pp. 2. N. Gaffke: Optimale Versuchsplanung für linear Zwei-Faktor Modelle. PhD thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, 1978. 3. N. Gaffke: D-optimal block designs with at most six varieties, Journal of Statistical Planning and Inference, 6 (1982), 183-200. 4. T. Tjur: Block designs and electrical networks, Annals of Statistics, 19 (1991), 1010-1027. 5. R. A. Bailey and P. J. Cameron: Using graphs to find the best block designs. In Topics in Structural Graph Theory (eds. L. W. Beineke and R. J. Wilson), Cambridge University Press, Cambridge, 2013, pp. 282-317.	1. W. J. Youden and W. S. Connor: The chain block design. Biometrics, 9, (1953), 127-140. 2. A. M. Herzberg and D. F. Andrews: The robustness of chain block designs and coat-of-mail designs. Communications in Statistics-Theory and Methods, 7 (1978), 479-485. 3. A. M. Herzberg and R. G. Jarrett: A-optimal block designs with additional singly replicated treatments. Journal of Applied Statistics, 34 (2007), 61-70.

References: few blocks	References: (nearly) maximal number of varieties
1. J. P. Morgan and B. Jin: Optimal experimentation in two blocks. Journal of Statistical Theory and Practice, 1, (2007), 357-375.	1. N. K. Mandal, K. R. Shah and B. K. Sinha: Uncertain resources and optimal designs: problems and perspectives. Calcutta Statistical Association Bulletin, 40, (1991), 267-282. 2. O. Krafft and M. Schaefer: A-optimal connected block designs with nearly minimal number of observations. Journal of Statistical Planning and Inference, 65, (1997), 357-386.

