Weakly neighbour-balanced designs

R. A. Bailey
University of St Andrews

St Andrews CIRCA seminar, 19 February 2015

Joint work with Katarzyna Filipiak and Augustyn Markiewicz (Poznan University of Life Sciences), Joachim Kunert (TU Dortmund) and Peter Cameron (St Andrews)

Small example: each treatment comes "once" per block

Wind \rightarrow

$$
\begin{array}{ccccccc}
6 \vdots 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 5 \vdots 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline \hline 3 \vdots 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline \hline 6 \vdots 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 5 \vdots 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline \hline 4 \vdots 0 & 3 & 6 & 2 & 5 & 1 & 4 \\
\hline \hline 3 \vdots 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline \hline 2 \vdots 0 & 5 & 3 & 1 & 6 & 4 & 2 \\
\hline \hline 1 \vdots 0 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{array}
$$

Small example: each treatment comes "once" per block

Wind \rightarrow

$$
\begin{array}{|lllllll|}
\hline 6 \vdots 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 5 \vdots 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline \hline 3 \vdots 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline \hline 6 \vdots 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 5 \vdots 0 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline \hline 4 \vdots 0 & 3 & 6 & 2 & 5 & 1 & 4 \\
\hline \hline 3 \vdots 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline \hline 2 \vdots 0 & 5 & 3 & 1 & 6 & 4 & 2 \\
\hline \hline 1 \vdots 0 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{array} \quad s_{i j}: \begin{aligned}
& \text { \# times } i \text { is directly } \\
& \text { upwind of } j
\end{aligned}
$$

Small example: each treatment comes "once" per block

Wind \rightarrow

$6: 0$	1	2	3	4	5	6
$5 \vdots 0$	2	4	6	1	3	5

$s_{i j}:=$ \# times i is directly
$s_{i j}:=$ upwind of j
$3 \vdots 0 \quad 4 \quad 1 \quad 5 \quad 2 \quad 6 \quad 3$
$6: 0$
$5: 0$

$4!0$	3	6	2	5	1	4

$3: 0 \quad 4 \quad 1 \quad 5 \quad 2 \quad 6 \quad 3$
$2 \vdots 0 \quad 5 \quad 3 \quad 1 \quad 6 \quad 4 \quad 2$
$1: 0$

Small example: each treatment comes "once" per block

Wind \rightarrow

$6: 0$	1	2	3	4	5	6
$5 \vdots 0$	2	4	6	1	3	5

$3: 0 \quad 4 \quad 1 \quad 5 \quad 2 \quad 6 \quad 3$
$6: 0$
$5: 0$

$4!0$	3	6	2	5	1	4

$$
\begin{array}{|lllllll|}
\hline \hline 3 \vdots 0 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline
\end{array}
$$

$$
\begin{array}{|lllllll|}
\hline 2 \vdots 0 & 5 & 3 & 1 & 6 & 4 & 2 \\
\hline \hline
\end{array}
$$

$$
1 \vdots 0
$$

$s_{i j}:=\begin{aligned} & \text { \# times } i \text { is } \\ & \text { upwind of } j\end{aligned}$

Small example: each treatment comes "once" per block

Wind \rightarrow

$6!0$	1	2	3	4	5	6
$5 \vdots 0$	2	4	6	1	3	5

$3: 0 \quad 4 \quad 1 \quad 5 \quad 2 \quad 6 \quad 3$
$6 \vdots 0$
$5: 0$
$4 \vdots 0$
$3 \vdots 0 \quad 4 \quad 1 \quad 5 \quad 2 \quad 6 \quad 3$
$2 \vdots 0 \quad 5 \quad 3 \quad 1 \quad 6 \quad 4 \quad 2$
$1: 0 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

$S=$| 0 |
| :--- |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |\(\left(\begin{array}{lllllll}0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6

0 \& 2 \& 2 \& 1 \& 2 \& 1 \& 1

1 \& 0 \& 2 \& 2 \& 1 \& 2 \& 1

1 \& 1 \& 0 \& 2 \& 2 \& 1 \& 2

2 \& 1 \& 1 \& 0 \& 2 \& 2 \& 1

1 \& 2 \& 1 \& 1 \& 0 \& 2 \& 2

2 \& 1 \& 2 \& 1 \& 1 \& 0 \& 2

2 \& 2 \& 1 \& 2 \& 1 \& 1 \& 0\end{array}\right)\)

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$
- and $S^{\top} S$ is completely symmetric.

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$
- and $S^{\top} S$ is completely symmetric.

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$
- and $S^{\top} S$ is completely symmetric.

KF and AM defined WNBDs (weakly neighbour balanced designs) and found some by brute computer search.

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$
- and $S^{\top} S$ is completely symmetric.

KF and AM defined WNBDs (weakly neighbour balanced designs) and found some by brute computer search.

KF, AM and JK showed that WNBDs are universally optimal (in a precise technical statistical sense).

Definitions of neighbour balance

A design with t treatments each occurring once in each circular block of size t is

- strongly neighbour balanced if S is a multiple of the all-1 matrix J;
- neighbour balanced if S is a multiple of $J-I$;
- weakly neighbour balanced if
- S has zero diagonal
- and there is some λ such that $s_{i j} \in\{\lambda-1, \lambda\}$ if $i \neq j$
- and $S^{\top} S$ is completely symmetric.

KF and AM defined WNBDs (weakly neighbour balanced designs) and found some by brute computer search.

KF, AM and JK showed that WNBDs are universally optimal (in a precise technical statistical sense).

RAB and PJC gave some constructions and non-existence results.

A 0,1-matrix

If we have a design which is weakly neighbour balanced but not neighbour balanced then S has zero diagonal, some other entries $\lambda-1$ and some other entries λ. Put

$$
A=S-(\lambda-1)(J-I)
$$

Then

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

A 0,1-matrix

If we have a design which is weakly neighbour balanced but not neighbour balanced then S has zero diagonal, some other entries $\lambda-1$ and some other entries λ. Put

$$
A=S-(\lambda-1)(J-I)
$$

Then

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We know something about (some) matrices like this!

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has

$$
\text { Type I if } A+A^{\top} \text { is completely symmetric; }
$$

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;
Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$.

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;
Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$.

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;
Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$.
If Type I , then $A^{\top} A$ is completely symmetric, A has $(t-1) / 2$ non-zero entries in each row and column, and $t \equiv 3 \bmod 4$.

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;
Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$.
If Type I, then $A^{\top} A$ is completely symmetric, A has $(t-1) / 2$ non-zero entries in each row and column, and $t \equiv 3 \bmod 4$. If Type II, then $A^{\top} A$ is completely symmetric.

Three types

- A is not zero;
- all entries of A are in $\{0,1\}$;
- A has zero diagonal;
- A has constant row-sums and constant column-sums;
- $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric.

We say that the design has
Type I if $A+A^{\top}$ is completely symmetric;
Type II if $A+A^{\top}$ is not completely symmetric and $\lambda=1$;
Type III if $A+A^{\top}$ is not completely symmetric and $\lambda>1$.
If Type I, then $A^{\top} A$ is completely symmetric, A has $(t-1) / 2$ non-zero entries in each row and column, and $t \equiv 3 \bmod 4$. If Type II, then $A^{\top} A$ is completely symmetric. If Type III, then $A^{\top} A$ is not completely symmetric.

Hooray for Type I

Theorem
If a WNBD is juxtaposed with a NBD and the result is a WNBD, then the starting WNBD either is a NBD or has Type I.

Hooray for Type I

Theorem
If a WNBD is juxtaposed with a NBD and the result is a WNBD, then the starting WNBD either is a NBD or has Type I.

Number the positions in each block $1,2, \ldots$, starting at the windy end.
Theorem
If a WNBD has the property that each numbered position has all treatments equally often, then it either is a NBD or has Type I.

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ.

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$.

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$. If t is prime power we can put $A_{i j}=1$ if and only if $j-i$ is a non-zero square in $\operatorname{GF}(t)$.

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$. If t is prime power we can put $A_{i j}=1$ if and only if $j-i$ is a non-zero square in $\mathrm{GF}(t)$. If t is prime then
 is a WNBD.

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$. If t is prime power we can put $A_{i j}=1$ if and only if $j-i$ is a non-zero square in $\mathrm{GF}(t)$. If t is prime then

$t=3 \checkmark$, but too small to separate direct effects from upwind effects
$t=7 \checkmark$
$t=11 \checkmark$

Type I: $A+A^{\top}$ and $A^{\top} A$ are both completely symmetric

We can regard A as the adjacency matrix of a digraph Γ. The above conditions are equivalent to Γ being a doubly regular tournament. These are conjectured to exist whenever $t \equiv 3 \bmod 4$. If t is prime power we can put $A_{i j}=1$ if and only if $j-i$ is a non-zero square in $\mathrm{GF}(t)$. If t is prime then

$t=3 \checkmark$, but too small to separate direct effects from upwind effects
$t=7 \checkmark$
$t=11 \checkmark$
$t=15$? RAB tried using A as the incidence matrix of $\operatorname{PG}(3,2)$ and proved that it is impossible.

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.
Doing this with $t=7$ gives a doubly regular tournament Γ_{2} on 15 vertices with an automorphism π of order 7 .
If we can find a Hamiltonian cycle φ in Γ_{2} which has no edge in common with any of $\pi^{i}(\varphi)$ for $i=1, \ldots, 6$, then $\varphi, \pi(\varphi), \ldots, \pi^{6}(\varphi)$ make a WNBD.

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.
Doing this with $t=7$ gives a doubly regular tournament Γ_{2} on 15 vertices with an automorphism π of order 7 .
If we can find a Hamiltonian cycle φ in Γ_{2} which has no edge in common with any of $\pi^{i}(\varphi)$ for $i=1, \ldots, 6$, then $\varphi, \pi(\varphi), \ldots, \pi^{6}(\varphi)$ make a WNBD.
RAB tried and failed to do this by hand.

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.
Doing this with $t=7$ gives a doubly regular tournament Γ_{2} on 15 vertices with an automorphism π of order 7 .
If we can find a Hamiltonian cycle φ in Γ_{2} which has no edge in common with any of $\pi^{i}(\varphi)$ for $i=1, \ldots, 6$, then $\varphi, \pi(\varphi), \ldots, \pi^{6}(\varphi)$ make a WNBD.
RAB tried and failed to do this by hand.
PJC used GAP, and found 120 solutions.

Type I and $t=15$

Reid and Brown give the following doubling construction.

$$
A_{2}=\left(\begin{array}{ccc}
A_{1}^{\top} & 0_{t} & A_{1}+I_{t} \\
1_{t}^{\top} & 0 & 0_{t}^{\top} \\
A_{1} & 1_{t} & A_{1}
\end{array}\right)
$$

If A_{1} is Type I for t then A_{2} is Type I for $2 t+1$.
Doing this with $t=7$ gives a doubly regular tournament Γ_{2} on 15 vertices with an automorphism π of order 7 .
If we can find a Hamiltonian cycle φ in Γ_{2} which has no edge in common with any of $\pi^{i}(\varphi)$ for $i=1, \ldots, 6$, then $\varphi, \pi(\varphi), \ldots, \pi^{6}(\varphi)$ make a WNBD.
RAB tried and failed to do this by hand.
PJC used GAP, and found 120 solutions.
KF put this A_{2} into Mathematica and asked it to find Hamiltonian decompositions.

Question

Question

Could we go directly from Δ_{1} to Δ_{2} ?

Type II: $A^{\top} A$ is completely symmetric and $\lambda=1$

Now we can regard A as the incidence matrix of a balanced incomplete-block design, with blocks labelled so that the diagonal is zero.

Type II: $A^{\top} A$ is completely symmetric and $\lambda=1$

Now we can regard A as the incidence matrix of a balanced incomplete-block design, with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs (such as perfect difference sets), we can construct WNBDs.

Type II: $A^{\top} A$ is completely symmetric and $\lambda=1$

Now we can regard A as the incidence matrix of a balanced incomplete-block design, with blocks labelled so that the diagonal is zero.

Using familiar tricks for constructing BIBDs (such as perfect difference sets), we can construct WNBDs.

We can also take advantage of symmetry to find a single Hamiltonian cycle whose images under a group of automorphisms of Γ give the blocks of the WNBD.

Type III: $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric, but $A^{\top} A$ and $\left(A+A^{\top}\right)$ are not

Some S-digraphs (Babai and Cameron) satisfy this.

Type III: $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely symmetric, but $A^{\top} A$ and $\left(A+A^{\top}\right)$ are not

Some S-digraphs (Babai and Cameron) satisfy this.
If A_{1} has Type I for t treatments then

$$
\left(\begin{array}{cccc}
A_{1} & A_{1}+I_{t} & \ldots & A_{1}+I_{t} \\
A_{1}+I_{t} & A_{1} & \ldots & A_{1}+I_{t} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1}+I_{t} & A_{1}+I_{t} & \ldots & A_{1}
\end{array}\right) \quad \text { has Type III for } m t \text { treatments }
$$

and $\left(\begin{array}{cccc}0 & 1_{t}^{\top} & 0 & 0_{t}^{\top} \\ 0_{t} & A_{1} & 1_{t} & A_{1} \\ 0 & 0_{t}^{\top} & 0 & 1_{t}^{\top} \\ 1_{t} & A_{1}^{\top} & 0_{t} & A_{1}\end{array}\right)$ has Type III for 2(t+1) treatments.

Type III: $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely

 symmetric, but $A^{\top} A$ and $\left(A+A^{\top}\right)$ are notSome S-digraphs (Babai and Cameron) satisfy this.
If A_{1} has Type I for t treatments then
$\left(\begin{array}{cccc}A_{1} & A_{1}+I_{t} & \ldots & A_{1}+I_{t} \\ A_{1}+I_{t} & A_{1} & \ldots & A_{1}+I_{t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1}+I_{t} & A_{1}+I_{t} & \ldots & A_{1}\end{array}\right)$
has Type III for $m t$ treatments
and $\left(\begin{array}{cccc}0 & 1_{t}^{\top} & 0 & 0_{t}^{\top} \\ 0_{t} & A_{1} & 1_{t} & A_{1} \\ 0 & 0_{t}^{\top} & 0 & 1_{t}^{\top} \\ 1_{t} & A_{1}^{\top} & 0_{t} & A_{1}\end{array}\right)$ has Type III for 2(t+1) treatments.
$t=3$ leads to the only Type III WNBDs ($t=6$ and $t=8$) found by KF and AM.

Type III: $A^{\top} A-(\lambda-1)\left(A+A^{\top}\right)$ is completely

 symmetric, but $A^{\top} A$ and $\left(A+A^{\top}\right)$ are notSome S-digraphs (Babai and Cameron) satisfy this.
If A_{1} has Type I for t treatments then
$\left(\begin{array}{cccc}A_{1} & A_{1}+I_{t} & \ldots & A_{1}+I_{t} \\ A_{1}+I_{t} & A_{1} & \ldots & A_{1}+I_{t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1}+I_{t} & A_{1}+I_{t} & \ldots & A_{1}\end{array}\right)$
has Type III for $m t$ treatments
and $\left(\begin{array}{cccc}0 & 1_{t}^{\top} & 0 & 0_{t}^{\top} \\ 0_{t} & A_{1} & 1_{t} & A_{1} \\ 0 & 0_{t}^{\top} & 0 & 1_{t}^{\top} \\ 1_{t} & A_{1}^{\top} & 0_{t} & A_{1}\end{array}\right)$ has Type III for 2 $(t+1)$ treatments.
$t=3$ leads to the only Type III WNBDs ($t=6$ and $t=8$) found by KF and AM.
Again, is there a way of going directly from the smaller design to the larger one?

